
Data Understanding, Data Analysis, and
Data Science Course Notes

Volume 4: Techniques of Data Analysis

Patrick Boily

September 2024

Quadrangle | Idlewyld Analytics and Consulting Services

This work is licensed under a Creative Commons Attribution – NonCommercial

– ShareAlike 4.0 International License .

Below is a human-readable summary of (and not a substitute for) the license. Please see
this page for the full legal text.

You are free to:

Share – copy and redistribute the material in any medium or format

Remix – remix, transform, and build upon the material for any purpose, even commer-

cially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and indicate

if changes were made. You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use.

ShareAlike – If you remix, transform, or build upon the material, you must distribute

your contributions under the same license as the original.

No additional restrictions – You may not apply legal terms or technological measures

that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public

domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity, privacy, or

moral rights may limit how you use the material.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

This one goes out to the “Welsh” contingent: Elowyn,

Llewellyn, and Gwynneth. Your world is going to be a whole

lot different than mine was; maybe data can even help make

some of it better. But one thing’s for sure: data is not going

away any time soon – better be prepared.

Series Preface

The first thing to know about Data Understanding, Data Analysis, and Data Science (DUDADS)

is that it isn’t really a “book”. It makes more sense to think of it as course notes, or as a

reference manual and a source of examples and application.

I borrow some of its contents from authors who do a better job of explaining things than

I could hope to do; I also sometimes modify their examples and code to better suit my

pedagogical needs.
*

Major influences include [1, 2, 3, 4, 5, 6, 8] – be sure to give these

masterful works the attention they deserve!

The second thing to know about DUDADS is that it isn’t really “a” book. It makes more

sense to think of it as a bunch of books in a trench coat, masquerading as single one.
†

No one is expected to traverse DUDADS in one sitting, or even to tackle more than a few

of its assigned chapters, sections, subsections, exercises at any given time; rather, it is

intended to be read in parallel with guided lectures.

The third thing to know about DUDADS is that the practical examples use R and/or

Python, for no particular reason other than that some programming language had to be

used to illustrate the concepts. In the text, R code appears in blue boxes:

... some R code ...

Whereas Python code appears in green boxes:

... some Python code ...

You may look at some piece of code and think to yourself: “This isn’t how I would do

it” or “such-and-such a task would be easier to accomplish if we used module/package

ABC or programming language XYZ”. That’s quite possible.

But finding the optimal tool is not the point of this book. In the first place, new data

science tools appear regularly, and it would be a fool’s errand to try to continuously

modify the book to keep up with them.
‡

In the second place, I am serious about the

“Understanding” part of Data Understanding, Data Analysis, and Data Science, and that is

why I favour a tool-agnostic approach.

*
In all cases, I have attempted to properly cite and give credit where it is due. Get in touch if you find omissions!

†
I paid heed to this realization by splitting it into a number of volumes.

‡
I am not saying that I won’t be adding examples in different languages in the future, but let’s not get ahead of

ourselves.

The fourth thing to know about DUDADS is that it is not a place to go to in order to obtain

a detailed step-by-step guide on “how to solve it”. In person, my answer to a vast array

of data science related questions is, rather anti-climatically: “it depends”. Of course, it

depends; on the data, on the objectives, on the cost associated with making a mistake,

on the stakeholder’s appetite for uncertainty, and, perhaps more surprisingly, on the

analytical and data preparation choices that are made along the way.

To some, this might smack of post-modernism: “you are saying that there is no truth, and

that data analysis is pointless!” To which I respond: “analysts have agency (lots of it, it turns

out), and their choices DO influence the results, so make sure to run multiple analyses to

determine the variability of the outcomes”. That is the nature of the discipline.

The last thing you should probably know about DUDADS is that I have made a concerted

effort to focus mainly on the story of (learning) data analysis and data science; sometimes,

that comes at the expense of rigorous exposition.

“The early stages of education have to include a lot of lies-to-children, because

early explanations have to be simple. However, we live in a complex world,

and lies-to-children must eventually be replaced by more complex stories if

they are not to become delayed-action genuine lies.” [7]

Some of the concepts and notions that I present are incomplete by design, but remain (I

hope) true-to-their-spirit, or at least true “enough” for a first pass.
§

My position is that

learning is an iterative process and that important take-aways from an early stage might

need to be modified to account for new developments at a later date. But all things in good

time: flexibility is a friend in your learning adventure; perfectionism, not always so.

Patrick Boily

Wakefield, September 2024

The DUDADS reference manuals are available at idlewyldanalytics.com

Volume 1: Prelude to Data Understanding
Volume 2: Fundamentals of Data Insight
Volume 3: Spotlight on Machine Learning
Volume 4: Techniques of Data Analysis
Volume 5: Special Topics in Data Science and Artificial Intelligence
The Practice of Data Visualization (with S. Davies and J. Schellinck)

§
In the parlance of the field, let me simply say that some of the details are left as an exercise for the reader (and

can also be found in the numerous references).

https://idlewyldanalytics.com

Preface References

[1] C.C. Aggarwal. Data Mining: the Textbook . Cham: Springer, 2015.

[2] C.C. Aggarwal, ed. Data Classification: Algorithms and Applications . CRC Press,

2015.

[3] C.C. Aggarwal and C.K. Reddy, eds. Data Clustering: Algorithms and Applications .

CRC Press, 2014.

[4] D. Dalpiaz. R for Statistical Learning . 2020.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction , 2nd ed. Springer, 2008.

[6] G. James et al. An Introduction to Statistical Learning: With Applications in R .

Springer, 2014.

[7] I. Stewart, J. Cohen, and T. Pratchett. The Science Of Discworld. Ebury Publishing,

2002.

[8] H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data . O’Reilly, Jan. 2017.

https://link.springer.com/book/10.1007/978-3-319-14142-8
https://www.charuaggarwal.net/classbook.pdf
http://www.charuaggarwal.net/clusterbook.pdf
https://daviddalpiaz.github.io/r4sl/
https://hastie.su.domains/ElemStatLearn/
https://hastie.su.domains/ElemStatLearn/
https://www.statlearning.com/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/

Contributors and Influences

A reference manual of this size could not have been compiled without the help of a

multitude of individuals over the years, who provided contributions, influences, and/or

inspiration:

Kevin Cheung Mining Data Streams

Youssouph Cissokho Anomaly Detection and Outlier Analysis

Soufiane Fadel Anomaly Detection and Outlier Analysis

Ehssan Ghashim Bayesian Data Analysis, Queueing Systems

Lani Haque Text Analysis and Text Mining, Network Data Analysis

Andrew Macfie Text Analysis and Text Mining

Richard Millson Anomaly Detection and Outlier Analysis, (Social) Network Data Analysis

Kate Park (Social) Network Data Analysis

Bing Wang Mining Data Streams

A hearty “thank you” to everyone, and to all others with whom I have crossed paths on

this data adventure!

Learning Paths

I mostly use the material found in this reference manual at various levels in my teaching

at the University of Ottawa (in the Department of Mathematics and Statistics).

In particular, here is what I cover in various courses:

MAT 4376/5314E (Special Topics in Probability and Statistics | Techniques of Data Analy-
sis) – Chapters 24–26 (and some material from The Practice of Data Visualization);

MAT 4376/5314X (Special Topics in Probability and Statistics | Applied Data Science) –

Chapters 27–29 (and Chapter 16 in DUDADS, Volume 2).

I strongly encourage students to familiarize themselves with the contents of Chapters

1–11, 15, 19–23 (DUDADS, Volumes 1–3) before taking these courses, although it is not

strictly necessary that they do so.

Contents

24 Queueing Models 1573
24.1 Background . 1573

24.2 Terminology . 1575

24.2.1 Input/Arrival Processes . 1579

24.2.2 Output/Service Processes . 1579

24.2.3 Queue Discipline . 1581

24.2.4 Joining a Queue . 1581

24.3 Theoretical Framework . 1581

24.3.1 Kendall-Lee Notation . 1582

24.3.2 Birth-Death Processes . 1583

24.3.3 Little’s Queuing Formula . 1584

24.4 𝑀/𝑀/1 Queueing Systems . 1585

24.4.1 Basics . 1585

24.4.2 Limited Capacity . 1587

24.5 𝑀/𝑀/𝑐 Queueing Systems . 1589

24.6 Exercises . 1592

Chapter References . 1592

25 Bayesian Data Analysis 1593
25.1 Plausible Reasoning . 1593

25.1.1 Rules of Probability . 1594

25.1.2 Bayes’ Theorem . 1596

25.1.3 Bayesian Inference Basics . 1598

25.1.4 Bayesian Data Analysis . 1600

25.2 Simple Examples . 1601

25.2.1 The Mysterious Coin . 1601

25.2.2 The Salary Question . 1603

25.2.3 Money ($ Bill Y’All) . 1607

25.3 Prior Distributions . 1614

25.3.1 Conjugate Priors . 1614

25.3.2 Uninformative Priors . 1615

25.3.3 Informative Priors . 1616

25.3.4 Maximum Entropy Priors . 1620

25.4 Posterior Distributions . 1623

25.4.1 High-Density Intervals . 1624

25.4.2 MCMC Methods . 1626

25.4.3 The MH Algorithm . 1626

25.5 Additional Topics . 1633

25.5.1 Uncertainty . 1633

25.5.2 Bayesian A/B Testing . 1635

25.6 Exercises . 1639

Chapter References . 1642

26 Anomaly Detection and Outlier Analysis 1643
26.1 Overview . 1643

26.1.1 Basic Notions & Concepts . 1643

26.1.2 ML Framework . 1648

26.1.3 Motivating Example . 1655

26.2 Quantitative Approaches . 1658

26.2.1 Distance Methods . 1658

26.2.2 Density Methods . 1669

26.3 Qualitative Approaches . 1683

26.3.1 AVF Algorithm . 1684

26.3.2 Greedy Algorithm . 1685

26.4 High-Dimensional Data . 1686

26.4.1 Definitions and Challenges . 1687

26.4.2 Projection Methods . 1687

26.4.3 Subspace Methods . 1697

26.4.4 Ensemble Methods . 1698

26.5 Exercices . 1702

Chapter References . 1703

27 Text Analysis and Text Mining 1705
27.1 Introduction . 1705

27.1.1 Case Study: BOTUS . 1705

27.1.2 Text Analysis . 1710

27.1.3 TM vs. NLP . 1711

27.2 Basics of Text Analysis . 1713

27.2.1 Text Collection . 1715

27.2.2 Text Representation . 1716

27.2.3 Text Processing . 1716

27.2.4 Text Statistics . 1721

27.2.5 Text Visualization . 1723

27.3 Text Mining Tasks . 1724

27.3.1 Classification . 1725

27.3.2 Clustering . 1728

27.3.3 Sentiment Analysis . 1729

27.4 Examples . 1734

27.4.1 NHL Game Recaps I . 1734

27.4.2 Shakespeare vs. Marlowe . 1749

27.4.3 The Play’s the Thing . 1765

27.4.4 Ham or Spam . 1775

27.4.5 NHL Game Recaps II . 1789

27.4.6 The Scottish Play . 1794

27.4.7 Regular Expressions . 1808

27.4.8 Movie Reviews . 1812

27.5 Exercises . 1820

Chapter References . 1821

28 Mining Data Streams 1823
28.1 Overview . 1824

28.1.1 Motivating Examples . 1824

28.1.2 Basic Notions . 1824

28.1.3 Data Stream Models . 1824

28.1.4 Link With Time Series Analysis . 1824

28.1.5 Software . 1824

28.2 Change Detection and Maintaining Statistics . 1824

28.2.1 Change Detection . 1824

28.2.2 Maintaining Statistics . 1824

28.3 Classification . 1824

28.3.1 Basics and Challenges . 1824

28.3.2 Approaches . 1824

28.3.3 Evaluation . 1824

28.3.4 Algorithms . 1824

28.4 Clustering . 1824

28.4.1 Basics and Challenges . 1824

28.4.2 Approaches . 1824

28.4.3 Evaluation . 1824

28.4.4 Algorithms . 1824

28.5 Frequent Itemset Mining . 1824

28.6 Examples . 1824

28.6.1 Maintaining Statistics . 1824

28.6.2 Bloom Filter . 1824

28.6.3 Sampling With a Reservoir . 1824

28.6.4 Sampling With a Hash Function . 1824

28.6.5 Fading Window . 1824

28.6.6 Adaptive Sliding Window Algorithm . 1824

28.6.7 Partition Incremental Discretization Algorithm . 1824

28.6.8 Histogram Drift . 1824

28.7 Exercises . 1824

29 (Social) Network Data Analysis 1825

List of Figures

24.1 Components of a generic queueing system . 1575

24.2 Components of a generic queueing system . 1577

24.3 Erlang random variables . 1578

24.4 Single line at bank with three tellers – 𝑀/𝑀/3/FCFS/20/∞ 1583

24.5 Birth-death process . 1584

24.6 Schematics of steady state vs. transient behaviour . 1585

24.7 Generic 𝑀/𝑀/𝑐 queue . 1590

25.1 Deductive vs. inductive syllogisms . 1594

25.2 Deductive vs. inductive reasoning . 1594

25.3 4 priors for the fair coin problem . 1602

25.4 Posteriors for a different numbers of tosses; 4 priors, same data 1604

25.5 Two priors for the salary problem . 1605

25.6 Posteriors for the salary problem – one per priors . 1606

25.7 Marginal posteriors for the salary problem – one per priors 1606

25.8 Catch-and-release schematics in the simple model . 1607

25.9 Catch-and-release schematics in the brittle model . 1610

25.10 Catch-and-release schematics in the expert model . 1612

26.1 A school of fish . 1645

26.2 Tukey’s boxplot test . 1647

26.3 Multi-modal supply chain corridor . 1649

26.4 Illustration of how to derive the various monthly fluidity indicators 1649

26.5 Conceptual time series decomposition . 1650

26.6 Marine transit CV data, from 2010 to 2013 . 1651

26.7 Diagnostic plot for marine transit CV data . 1651

26.8 Adjusted plot for marine transit CV data . 1651

26.9 Oversampling, undersampling, and hybrid strategy for anomaly detection 1654

26.10 Generating artificial cases with SMOTE and DRAMOTE . 1655

26.11 Illustration of autoencoder compression/reconstruction for anomaly detection 1656

26.12 2D visualization of various similarity metrics . 1665

26.13 Low-density areas as outlier nurseries . 1669

26.14 Illustration of 𝑘−local density . 1670

26.15 Algorithm: LOF . 1671

26.16 Illustration of reachability . 1672

26.17 Illustration of DBSCAN main concepts . 1673

26.18 Algorithm: DBSCAN . 1674

26.19 DBSCAN clustering outcomes . 1677

26.20 HDBSCAN/OPTICS clustering outcomes . 1678

26.21 Algorithm: IsoTree . 1680

26.22 Isolation Forest schematics . 1681

26.23 Algorith: IsoForest . 1682

26.24 3−way, 2−way, and 1−way tables for the artificial example 1683

26.25 Algorithm: AVF . 1685

26.26 Data analytical tasks that are not aligned with PCA . 1690

26.27 Algorithm: FB . 1697

26.28 Algorithm: SE . 1699

26.29 Algorithm: IE . 1700

27.1 T3’s Trump and Dump process [42]. 1707

27.2 Examples of @realDonaldTrump tweets involving Delta, Toyota Motor, L.L.Bean, Ford, and

Boeing. 1708

27.3 BOTUS reporting on its trades (part 1). 1709

27.4 BOTUS reporting on its trades (part 2). 1710

27.5 A poutine (on the left); an abomination in the eyes of all right-thinking sentient beings (on

the right). 1712

27.6 Syntactic parsing of a sentence using the Stanford parser [41]. 1713

27.7 Abridged syntactic parsing of a sentence using the Enju English parser [32]. 1716

27.8 Term-document matrix/ document-term matrix for a hypothetical corpus, with Row Sums

and Column Sums. 1720

27.9 Text visualizations (examples) . 1723

27.10 Text mining and NLP pipeline . 1724

List of Tables

26.1 Confusion matrix for an anomaly detection problem . 1652

26.2 Metric values for various supervised anomaly detection models 1653

27.1 Penn treebank tagset (part 1) [43]. 1717

27.2 Penn treebank tagset (part 2) [43]. 1718

27.3 The 37 universal syntactic relations used in Universal Dependencies v2. The upper part of the

table follows the main organizing principles of the UD taxonomy such that rows correspond

to functional categories in relation to the head (core arguments of clausal predicates, non-core

dependents of clausal predicates, and dependents of nominals) while columns correspond to

structural categories of the dependent (nominals, clauses, modifier words, function words).

The lower part of the table lists relations that are not dependency relations in the narrow

sense [44]. 1718

27.4 Universal dependency relations, alphabetical listing [44]. 1719

Queueing Models 24
24.1 Background 1573
24.2 Terminology 1575

Input/Arrival Processes . 1579
Output/Service Processes 1579
Queue Discipline 1581
Joining a Queue 1581

24.3 Theoretical Framework . . . 1581
Kendall-Lee Notation . . . 1582
Birth-Death Processes . . 1583
Little’s Queuing Formula 1584

24.4𝑀/𝑀/1 Queueing Systems 1585
Basics 1585
Limited Capacity 1587

24.5𝑀/𝑀/𝑐 Queueing Systems 1589
24.6 Exercises 1592

Chapter References 1592

by Ehssan Ghashim and Patrick Boily

Queuing theory is a branch of mathematics that studies and models the

act of waiting in lines, or queues. As a topic in operational research, it

combines elements of a variety of quantitative disciplines, but it is not

often part of the data analyst’s toolbox. In this chapter, we introduce

the terminology and basic framework of queueing models (including

Kendall-Lee notation, birth-death processes, and Little’s formula), as

well as the most commonly-used queueing system: 𝑀/𝑀/𝑐.

24.1 Background

Queuing theory is a branch of mathematics that studies and models

the act of waiting in lines. The seminal paper on queuing theory [3]

was published in 1909 by Danish mathematician A.K. Erlang; in it, he

studied

the problem of determining how many telephone circuits

were necessary to provide phone service that would prevent

customers from waiting too long for an available circuit. In

developing a solution to this problem, he began to realize

that the problem of minimizing waiting time was applicable

to many fields, and began developing the theory further.

Erlang’s switchboard problem laid the path for modern

queuing theory [1].

Queueing theory boils down to answering simple questions:

How likely is it that objects/units/persons will queue up and wait

in line?

How long will the line be?

How long will the wait be?

How busy will the system be?

How much capacity is needed to meet an expected level of demand?

Knowing how to think about these kinds of questions will help analysts

and stakeholder anticipate bottlenecks. As a result, they will build

systems and teams to be more efficient and more scalable, to have higher

performance and lower costs, and to ultimately provide better service to

their customers and end users.

Queueing theory also allows for the quantitative treatment of bottlenecks

and effect on performance. For instance, a question such as “how long

will the wait be, on average?” will have an answer, but so will other

1574 24 Queueing Models

questions concerning the variability of wait times, the distribution of

wait times, and the likelihood that a customer will receive extremely

poor service, and so on [5].

Let us consider a simple example. Suppose a grocery store has a single

checkout line and a single cashier. If, on average, one shopper arrives

at the line to pay for their groceries every 5 minutes and if scanning,

bagging, and paying takes 4.5 minutes, on average, would we expect

customers to have to wait in line?

When the problem is presented this way, our intuition says that there

should be no waiting in line, and that the cashier should be idle, on

average, 30 seconds every 5 minutes, only being busy 90% of the time.

No one ever has to wait before being served!

If you have ever been in a grocery store, however, you know that this is

not what happens in reality; many shoppers will wait in line, and they

will have to wait a long time before being processed.

Fundamentally, queueing happens for three reasons:

irregular arrivals – shoppers do not arrive at the checkout line

on a regular schedule; they are sometimes spaced far apart and

sometimes close together, so they overlap (an overlap automatically

causes queueing and waiting);

irregular job sizes – shoppers do not all get processed in 4.5

minutes; someone shopping for a large family will require much

more time than someone shopping only for themselves, for instance

(when this happens, overlap is again a problem because new

shoppers will arrive and be ready to check out while the existing

ones are still in progress), and

waste – lost time can never be regained; shoppers overlap because

the second shopper arrived too soon, before the first had the time to

finish being served, but looking at it the other way, perhaps it’s not

the second shopper’s fault; perhaps the first shopper should have

arrived earlier, but they wasted time reading a magazine while the

cashier was idle! They missed their chance for quick service and,

as a result, made the second shopper have to wait.

Irregular arrival times and job sizes are guaranteed to cause queueing.

The only time there is no queueing is when the job sizes are uniform, the

arrivals are timed evenly, and there is little enough work for the cashier to

keep up with the arrival. Even when the cashier is barely busy, irregular

arrivals or arrivals in bursts will cause some queueing.

In general, queueing gets worse when the following hold:

high utilisation – the busier the cashier is, the longer it takes to

recover from wasted time;

high variability – the more variability in arrivals or job sizes, the

more waste and the more overlap (queueing) occurs, and

insufficient number of servers – fewer cashiers means less capacity

to absorb arrival spikes, leading to more wasted time and higher

utilisation.

In order to describe queues, we must first know and understand some

useful probability distributions, as well as input and output processes.

24.2 Terminology 1575

24.2 Terminology

Queueing theory studies processes in terms of three key concepts:

customers are the units of work that the system serves – a customer

can be a real person, or it can be whatever the system is supposed

to process and complete: a web request, a database query, a part to

be milled by a machine, etc.;

servers are the objects that do the processing work – a server might

be the cashier at the grocery store, a web server, a database server,

a milling machine, etc., and

queues are where the units of work wait if the server is busy and

can not start the work as they arrive – a queue may be a physical

line, reside in memory, etc.

Figure 24.1: Components of a generic

queueing system, by D. Hare .

Useful Distributions Three distributions play a central role in queueing

theory: Poisson, exponential, and Erlang distributions.

Poisson Distribution The Poisson distribution counts the number of

discrete events occurring in a fixed time period; it is closely connected to

the exponential distribution, which measures the time between arrivals of

the events. The Poisson distribution is a discrete distribution; the random

variable can only take non-negative integer values. The exponential

distribution can take any (nonnegative) real value.

Consider the problem of determining the probability of 𝑛 arrivals be-

ing observed during a time interval of length 𝑡, where the following

assumptions are made:

the probability that an arrival is observed during a small time

interval (say of length 𝜈) is proportional to the length of interval;

let the proportionality constant be 𝜆, so that the probability is 𝜆𝜈;

the probability of two or more arrivals in a small interval is zero;

the number of arrivals in any time interval is independent of the

number in non-overlapping time interval – for example, the number

of arrivals occurring between times 5 and 25 does not provide

https://community.alteryx.com/t5/Engine-Works/Tackling-Queued-Jobs-With-Queueing-Theory-Part-1/ba-p/475036

1576 24 Queueing Models

information about the number of arrivals occurring between times

30 and 50.

Let 𝑃(𝑛; 𝑡) be the probability of observing 𝑛 arrivals in a time interval of

length 𝑡. Then, for some 𝜆 > 0,

𝑃𝜆(𝑛; 𝑡) = (𝜆𝑡)𝑛
𝑛!

𝑒−𝜆𝑡 , 𝑛 = 0, 1, 2, · · ·

is the probability mass function of the Poisson distribution for the discrete

random variable 𝑛 – the number of arrivals – for a given length of time

interval 𝑡 (see Figure 24.2).

Example: on average, 50 customers arrive in a coffee shop every hour.

What is the probability that exactly 20 customers will arrive in a 30-minute

period, if the arrivals follow a Poisson distribution?

Solution: given 𝜆 = 50 customers per hour, 𝑡 = 30 min = 0.5 hr and

𝑛 = 20, we have

𝑃50(20; 0.5) = (50 · 0.5)20

20!

𝑒−50·0.5 ≈ 5.2%.

We can evaluate the probability directly in R via

n=20

lambda=50

t=0.5

dpois(n,lambda*t)

[1] 0.05191747

In a queueing system, such arrivals are referred to as Poisson arrivals.

The time between successive arrivals is called the inter-arrival time.

Exponential Distribution If the number of arrivals in a given time

interval follows a Poisson distribution with parameter 𝜆𝑡, the inter-

arrival times follow an exponential distribution with probability density

function

𝑓𝜆(𝑡) = 𝜆𝑒−𝜆𝑡 , for 𝑡 > 0,

and the probability 𝑃(𝑊 ≤ 𝑡) that a customer’s waiting time𝑊 is smaller

than the length of the time interval 𝑡 is

𝑃(𝑊 ≤ 𝑡) = 1 − 𝑒−𝜆𝑡

(see Figure 24.2). We would write𝑊 ∼ Exp(𝜆).

Example: a manager of a fast food restaurant observes that an average of

9 customers are served by a waiter in a one-hour time period. Assuming

that the service time follows an exponential distribution, what is the

probability that a customer will be served within 15 minutes?

Solution: let 𝑤 be the average waiting time. Given 𝜇 = 9 customers per

hours, 𝑡 = 15 min = 0.25 hr, we have

𝑃(𝑤 ≤ 15 min) = 1 − 𝑒−9×0.25 ≈ 89.5%.

24.2 Terminology 1577

Figure 24.2: Poisson (with 𝜆𝑡 = 2.3) and

exponential distributions (with parameter

𝜆). The shaded area (right) represents the

probability that a customer will wait up

to the length of the time interval 𝑡.

We can evaluate the probability directly in R.

t=0.25

mu=9

pexp(t,rate=mu)

[1] 0.8946008

In general, if the arrival rate is stationary, if bulk arrivals (two or more

simultaneous arrivals) cannot occur, and if past arrivals do not affect

future arrivals, then inter-arrival times follow an exponential distribution

with parameter 𝜆, and the number of arrivals in any interval of length 𝑡

is Poisson with parameter 𝜆𝑡.

One of the most attractive features of the exponential distribution relating

to inter-arrival times is that it is memoryless – if 𝑋 follows an exponential

distribution, then for all non-negative values of 𝑡 , ℎ,

𝑃(𝑋 ≥ 𝑡 + ℎ |𝑋 ≥ 𝑡) = 𝑃(𝑋 ≥ ℎ).

No other density function satisfies this property [8].

The memoryless property of the exponential distribution is important

because it implies that the probability distribution of the time until the

next arrival is independent of the time since the last arrival. This is clearly

not always the case – imagine if that was so when waiting for public

transportation!

For instance, if we know that at least 𝑡 time units have elapsed since the

last arrival, then the distribution of the time ℎ until the next arrival is

independent of 𝑡. If ℎ = 4, say, then we must have

𝑃(𝑋 > 9|𝑋 > 5) = 𝑃(𝑋 > 7|𝑋 > 3) = 𝑃(𝑋 > 4).

Example: The time 𝑊 a customer spends waiting in a bank queue is

exponentially distributed with mean 𝜆 = 10 min, say. If they’ve already

waited 10 minutes, what is the probability that they will have had to wait

more than 15 minutes in total, when all is said and done?

Solution: thanks to the memory-less property of the exponential distri-

bution, we have

𝑃(𝑊 > 15 | 𝑊 > 10) = 𝑃(𝑊 > 15−10 = 5) = exp(−5/𝜆) = exp(−1/2) ≈ 60.6%.

1578 24 Queueing Models

We can evaluate the probability directly in R.

w=5

lambda=10

1-pexp(w,rate=1/lambda)

[1] 0.6065307

Erlang Distribution The exponential distribution is not always an appro-

priate model of inter-arrival times, however (perhaps the process should

not be memoryless, say).

A common alternative is to use the Erlang distribution E(𝑅, 𝑘), a continu-

ous random variable with rate and shape parameters 𝑅 > 0 and 𝑘 ∈ ℤ+
,

respectively, whose probability density function is

𝑓𝑅,𝑘(𝑡) =
𝑅(𝑅𝑡)𝑘−1𝑒−𝑅𝑡

(𝑘 − 1)! , 𝑡 ≥ 0.

If 𝑘 = 1, the Erlang distribution reduces to an exponential distribution

with parameter 𝑅. It can further be shown that if 𝑋 ∼ E(𝑅, 𝑘), where

𝑅 = 𝑘𝜆, then 𝑋 ∼ 𝑋1 + 𝑋2 + · · · + 𝑋𝑘 , where each 𝑋𝑖 ∼ Exp(𝑅) is an

independent random variable.

When we model the inter-arrival process as an Erlang distribution

E(𝑘𝜆, 𝑘), we are really saying that it is equivalent to customers going

through 𝑘 phases (each of which is memoryless) before being served.

For this reason, the shape parameter is often referred to as the number of

phases of the Erlang distribution [7].

Figure 24.3: Probability distribution func-

tions for various Erlang random variable

[Wikipedia].

24.2 Terminology 1579

24.2.1 Input/Arrival Processes

The input process is usually called the arrival process. Arrivals are

called customers. In the models under consideration, we assume that

arrivals cannot be simultaneous (this might be unrealistic when modeling

arrivals at a restaurant, say). If simultaneous arrivals are possible (in

theory and/or in practice), we say that bulk arrivals are allowed.

Usually, we assume that the arrival process is unaffected by the number
of customers in the system. In the context of a bank, this would imply

that whether there are 500 or 5 people at the bank, the process governing

arrivals remains unchanged. There are two common situations in which

the arrival process may depend on the number of customers present.

The first occurs when arrivals are drawn from a small population – the

so-called finite source models – if all members of the population are

already in the system, there cannot be another arrival!

Another such situation arises when the rate at which customers arrive

at the facility decreases when the facility becomes too crowded. For

example, when customers see that a restaurant’s parking lot is full, they

might very well decide to go to another restaurant or forego eating out

altogether. If a customer arrives but fails to enter the system, we say that

the customer has balked.

24.2.2 Output/Service Processes

To describe the output process (often called the service process) of

a queuing system, we usually specify a probability distribution – the

service time distribution – which governs the customers’ service time.

In most cases, we assume that the service time distribution is independent

of the number of customers present in the system. This implies, for

example, that the server does not work faster when more customers

are present. We can distinguish two types of servers: in parallel and in
series.

Servers are in parallel if they all provide the same type of service and

a customer only needs to pass through one of them to complete their

service. For example, the tellers in a bank are usually arranged in parallel;

typically, customers only need to be serviced by one teller, and any teller

can perform the desired service.

Servers are in series if a customer must pass through several servers

before their service is complete. An assembly line is an example of such

a queuing system. Input and output processes occur in a variety of

situations:

situation: purchasing Blue Jays tickets at the Rogers Centre

input: baseball fans arrive at the ticket office

output: tellers serve the baseball fans

situation: pizza parlour

input: requests for pizza delivery are received

output: pizza parlour prepares and bakes pizzas, and sends them

to be delivered

1580 24 Queueing Models

situation: government service centre

input: citizen/residents enter the service centre

output: receptionist assigns them to a specific queue based on their

needs:

− input: citizen/residents enter a specific queue based on their

needs

output: public servant addresses their needs

situation: hospital blood bank

input: pints of blood arrive

output: patients use up pints of blood

situation: garage

input: cars break down and are sent to the garage for repairs

output: cars are repaired by mechanics and sent back on the streets

The relevant computations are fairly easy to execute, as the following

examples demonstrate.

Example: On average, 4.6 customers enter a coffee shop each hour. If the

arrivals follow a Poisson process, what is the probability that at most two

customers will enter in a 30 minute period?

Solution: since 30 min = 0.5 hr, we have

𝑃𝜆=4.6(𝑛 ≤ 2; 𝑡 = 0.5) = 𝑃4.6(0, 0.5) + 𝑃4.6(1, 0.5) + 𝑃4.6(2, 0.5)

= 𝑒−4.6·0.5
[
(4.6 · 0.5)0

0!

+ (4.6 · 0.5)1
1!

+ (4.6 · 0.5)2
2!

]
≈ 0.5960;

the corresponding Poisson distribution is shown in Figure 24.2.

We can evaluate the probability directly in R.

n=2

lambda=4.6

t=0.5

ppois(n,lambda*t)

[1] 0.5960388

Example: in a fast food restaurant, a cashier serves on average 9 customers

in a one-hour time period. If the service time follows an exponential

distribution, what percentage of customers will be served in 10 minutes

or less? After 30 minutes?

Solution: since 1 hr = 60 mins, we have 𝜇 = 9 customers/60 minutes,

and so

𝑃(𝑊 ≤ 10/60) = 1 − 𝑒−9·10/60 ≈ 0.7769

𝑃(𝑊 > 30/60) = 𝑒−9·30/60 ≈ 0.0111.

24.3 Theoretical Framework 1581

24.2.3 Queue Discipline

To describe a queuing system completely, we must also describe the

queue discipline and the manner in which customers join lines. The

queue discipline describes the method used to determine the order in

which customers are served:

the most common queue discipline is the first come, first served
(FCFS) discipline, in which customers are served in the order of

their arrival, as one would expect to see in an Ottawa coffee shop;

under the last come, first served (LCFS) discipline, the most recent

arrivals are the first to enter service; for example, if we consider

exiting from an elevator to be the service, then a crowded elevator

illustrates such a discipline;

sometimes the order in which customers arrive has no effect on the

order in which they are served; this would be the case if the next

customer to enter service is randomly chosen from those customers

waiting for service, a situation referred to as service in random
order (SIRO) discipline; when callers to an inter-city bus company

are put on hold, the luck of the draw often determines which caller

will next be serviced by an operator;

finally, priority discipline classifies each arrival into one of several

categories, each of which is assigned a priority level (a triage
process); within each priority level, customers enter the queue on

a FCFS basis; such a discipline is often used in emergency rooms

to determine the order in which customers receive treatment, and

in copying and computer time-sharing facilities, where priority is

usually given to jobs with shorter processing times.

24.2.4 Method Used by Arrivals to Join Queue

Another important factor for the behaviour of the queuing system is the

method used by customers to determine which line to join. For example,

in some banks, customers must join a single line, but in other banks,

customers may choose the line they want to join.

When there are several lines, customers often join the shortest line.

Unfortunately, in many situations (such as at the supermarket), it is

difficult to define the shortest line. If there are several lines at a queuing

facility, it is important to know whether or not customers are allowed to

switch, or jockey, between lines. In most queuing systems with multiple

lines, jockeying is permitted, but jockeying at a custom inspection booth

would not be recommended (if it is even allowed), for instance.

24.3 Queueing Theory Framework

There is a standard notation that is used to describe large families of

queueing systems: the Kendall-Lee notation [4].

1582 24 Queueing Models

24.3.1 Kendall-Lee Notation

Queuing systems can be described via six characteristics:

𝑥1/𝑥2/𝑥3/𝑥4/𝑥5/𝑥6.

The 1st characteristic 𝑥1 specifies the nature of the arrival process. The

following standard abbreviations are used:

𝑀 inter-arrival times are independent identically distributed (iid) exponentials

𝐷 inter-arrival times are iid and deterministic

𝐸𝑘 inter-arrival times are iid Erlangs with shape parameter 𝑘

𝐺 inter-arrival times are iid and governed by some general distribution

The 2nd characteristic 𝑥2 specifies the nature of the service times:

𝑀 service times are iid and exponential

𝐷 service times are iid and deterministic

𝐸𝑘 service times are iid Erlang with shape parameter 𝑘

𝐺 service times are iid and follow some general distribution

The 3rd characteristic 𝑥3 represents the number of parallel servers.

The 4th characteristic 𝑥4 describes the queue discipline:

FCFS first come, first served

LCFS last come, first served

SIRO service in random order

GD general queue discipline

The 5th characteristic 𝑥5 specifies the maximum allowable number of
customers in the system.

1
1: Including customers who are waiting

and customers who are in service.

The 6th characteristic 𝑥6 gives the size of the population from which

customers are drawn. Unless the number of potential customers is of the

same order of magnitude as the number of servers, the population size

is considered to be infinite.

In many important models 𝑥4/𝑥5/𝑥6 is GD/∞/∞.
2

As an example,2: When that is the case, the string is often

omitted. 𝑀/𝑀/3/FCFS/20/∞ could represent a bank with 3 tellers, exponential

arrival times, exponential service times, a “first come, first served” queue

discipline, a total capacity of 20 customers, and an infinite population

pool from which to draw. The situation is illustrated in Figure 24.4.

Examples: here are some commonly-used/studied queueing systems:

Name Notation Example

simple system 𝑀/𝑀/1 customer service desk in a small store

multi-server system 𝑀/𝑀/𝑐 airline ticket counter

constant service 𝑀/𝐷/1 automated car wash

general service 𝑀/𝐺/1 auto repair shop

limited capacity 𝑀/𝑀/1/𝑁 barber shop with 𝑁 waiting seats

24.3 Theoretical Framework 1583

Figure 24.4: Single line at bank with three

tellers – 𝑀/𝑀/3/FCFS/20/∞.

24.3.2 Birth-Death Processes

The state of a queueing system at time 𝑡 is defined to be the number of

customers in the queuing system, either waiting in line or in service, at

time 𝑡. At 𝑡 = 0, the state of the system is the initial number of customers

in the system. This state is worth recording because it clearly affects the

state at future times 𝑡.

Knowing this, we define 𝑃𝑖 , 𝑗(𝑡) as the probability that the state at time

𝑡 is 𝑗, given that the state at 𝑡 = 0 was 𝑖. For large 𝑡, 𝑃𝑖 , 𝑗(𝑡) becomes

independent of 𝑖 and approaches a limit 𝜋 𝑗 . This limit is known as the

steady-state of state 𝑗.

It is generally quite difficult to determine the steps of arrivals and services

that lead to a steady-state 𝜋 𝑗 . Likewise, starting from an early 𝑡, it is

difficult to determine exactly when a system will reach its steady state

𝜋 𝑗 , if such a state even exists.

For simplicity’s sake, when a queuing system is studied, we begin by

assuming that the steady-state has already been reached. A birth-death
process is a Markov process in which states are indexed by non-negative

integers, and transitions are only permitted between “neighbouring”

states. After a “birth”, the state increases from 𝑛 to 𝑛 + 1; after a “death”,

the state decreases from 𝑚 to 𝑚 − 1.

Typically, we denote the set of birth rates and death rates by 𝜆𝑛 and 𝜇𝑚 ,

respectively (see Figure 24.5).

Pure birth processes are those for which 𝜇𝑚 = 0 for all 𝑚; pure death
processes those for which 𝜆𝑛 = 0 for all 𝑛. The steady-state solution
of a birth-death process, i.e., the probability 𝜋𝑛 of being in state 𝑛, can
actually be computed:

𝜋𝑛 = 𝜋0

𝜆0𝜆1 · · ·𝜆𝑛−1

𝜇1𝜇2 · · ·𝜇𝑛
, for 𝑛 = 1, 2, · · ·

where 𝜋0 is the probability of being in state 0 (i.e., without users). It can

further be shown [5] that:

𝜋0 =
1

1 +
∞∑
𝑛=1

𝑛−1∏
𝑗=0

𝜆 𝑗
𝜇𝑗+1

.

1584 24 Queueing Models

Figure 24.5: Birth-death process; queueing states indexed by integers; birth rates and death rates indicated by 𝜆𝑛 and 𝜇𝑚 , respectively

(source unknown).

24.3.3 Little’s Queuing Formula

It is often the case that clients and end users are interested in determining

the amount of time that a typical customer spends in the queuing

system. Let𝑊 be the expected waiting time spent in the queuing system,

including time in line plus time in service, and𝑊𝑞 be the expected time
a customer spends waiting in line.

Both𝑊 and𝑊𝑞 are computed under the assumption that the steady state

has been reached. By using a powerful result known as Little’s queuing
formula,𝑊 and𝑊𝑞 are easily related to the number of customers in the

queue and those waiting in line. For any queuing system (or any subset

of a queuing system), consider the following quantities:

𝜆 = average number of arrivals entering the system per unit time;

𝐿 = average number of customers present in the queuing system;

𝐿𝑞 = average number of customers waiting in line;

𝐿𝑠 = average number of customers in service;

𝑊 = average time a customer spends in the system;

𝑊𝑞 = average time a customer spends in line, and

𝑊𝑠 = average time a customer spends in service.

Customers in the system can only be found in the queue or being serviced,

so that 𝐿 = 𝐿𝑞 + 𝐿𝑠 and𝑊 =𝑊𝑞 +𝑊𝑠 . In these definitions, all averages

are steady-state averages.

For most queuing systems in which a steady-state exists, Little’s queuing
formula are summarized by:

𝐿 = 𝜆𝑊, 𝐿𝑞 = 𝜆𝑊𝑞 , and 𝐿𝑠 = 𝜆𝑊𝑠 .

Example: if, on average, 46 customers enter a restaurant each hour it is

opened, and if they spend, on average, 10 minutes (1/6 hours) waiting to

be served, then we should expect 46 · 1/6 ≈ 7.7 customers in the queue

at all time (on average).

24.4 𝑀/𝑀/1 Queueing Systems 1585

Figure 24.6: Schematics of steady state vs.

transient behaviour (source unknown).

24.4 𝑀/𝑀/1 Queueing Systems

We now discuss the simplest non-trivial queueing system.

24.4.1 Basics

An 𝑀/𝑀/1/GD/∞/∞ queueing system has exponential inter-arrival

times, exponential service times, and a single server. It can be modeled

as a birth-death process with

𝜆 𝑗 = 𝜆, 𝑗 = 0, 1, 2, . . .

𝜇0 = 0

𝜇𝑗 = 𝜇, 𝑗 = 1, 2, 3, . . .

Substituting these rates in the steady-state solution of a birth-death

process yields

𝜋 𝑗 =
𝜆 𝑗𝜋0

𝜇𝑗
= 𝜌 𝑗𝜋0 ,

where 𝜌 = 𝜆/𝜇 is the traffic intensity of the system.

Since the system has to be in exactly one of the states at any given moment,

the sum of all probabilities is 1:

𝜋0 + 𝜋1 + 𝜋2 + · · · = 𝜋0(1 + 𝜌 + 𝜌2 + · · ·) = 1.

If 0 ≤ 𝜌 < 1, the infinite series converges to
1

1−𝜌 from which we derive

𝜋0 ·
1

1 − 𝜌
= 1 =⇒ 𝜋0 = 1 − 𝜌 =⇒ 𝜋 𝑗 = 𝜌 𝑗𝜋0 = 𝜌 𝑗(1 − 𝜌)

as the steady-state probability of state 𝑗.

If 𝜌 ≥ 1, the infinite series diverges and no steady-state exists. Intuitively,

this happens when 𝜆 ≥ 𝜇, that is, if the arrival rate is greater than the

service rate, then the state of the system grows without bounds and the

queue is never cleared. From this point on, we assume 𝜌 < 1 to guarantee

that the steady-state probabilities 𝜋 𝑗 exist, from which we can determine

several quantities of interest.

1586 24 Queueing Models

Assuming that the steady state has been reached, it can be shown that 𝐿,

𝐿𝑠 , and 𝐿𝑞 are given respectively by:

𝐿 =
𝜆

𝜇 − 𝜆
=

𝜌

1 − 𝜌
, 𝐿𝑠 = 𝜌, 𝐿𝑞 =

𝜌2

1 − 𝜌
.

Using Little’s queuing formula, we can also solve for𝑊 ,𝑊𝑠 , and𝑊𝑞 by

dividing each of the corresponding 𝐿 values by 𝜆:

𝑊 =
1

𝜇 − 𝜆
, 𝑊𝑠 =

1

𝜇
, 𝑊𝑞 =

𝜆

𝜇(𝜇 − 𝜆) .

Note that, as expected, both 𝑊,𝑊𝑞 → +∞ when 𝜌 → 1. On the other

hand,𝑊𝑞 → 0 and𝑊 → 1

𝜇 (the mean service time) as 𝜌 → 0.

Example: (based on [9]) an average of 10 cars arrive at a single-server

drive-in teller every hour. Assume that the average customer is served

in 4 minutes, and that both inter-arrival times and service times are

exponentially distributed.

1. What is the probability that the teller is idle?

2. Excluding the car that is being served, what is the average number

of cars waiting in line at the teller?

3. What is the average amount of time a drive-in customer spends in

the bank parking lot (including time in service)?

4. On average, how many customers per hour are served by the teller?

Solution: by assumption, we are dealing with an 𝑀/𝑀/1/GD/∞/∞
queuing system for which 𝜆 = 10 cars/hr and 𝜇 = 15 cars/hr, and as

such 𝜌 = 10/15 = 2/3.

1. The teller is idle one third of the time on average because 𝜋0 =

1 − 𝜌 = 1/3.

2. There are 𝐿𝑞 = 𝜌2/(1 − 𝜌) = 4/3 cars waiting in line for the teller.

3. We know that 𝐿 = 𝜆/(𝜇−𝜆) = 10/(15−10) = 2, and so𝑊 = 𝐿/𝜆 =

0.2 hr = 12 min.

4. If the teller were always busy, it would serve an average of 𝜇 = 15

customers per hour. From part 1., we know that the teller is only

busy two-thirds of the time, thus during each hour, the teller serves

an average of 15 · 2/3 = 10 customers. This is reasonable since, in a

steady-state, 10 customers are arriving each hour and 10 customers

must leave the system every hour.

Example: (based on [6]) Suppose that all car owners fill up when their

tanks are exactly half full. On average, 7.5 customers arrive every hour at

a single-pump gas station. It takes an average of 4 minutes to fuel a car.

Assume that inter-arrival times and service times are both exponential.

1. What are the values of 𝐿 and𝑊 in this scenario?

2. Suppose that a gas shortage occurs and panic buying takes place. To

model this phenomenon, assume that all car owners now purchase

gas when their tanks are exactly three-quarters full. Since each car

owner is now putting less gas into the tank during each visit to the

station, we assume that the average service time has been reduced

to 10/3 minutes. How has panic buying affected the values of 𝐿

and𝑊?

24.4 𝑀/𝑀/1 Queueing Systems 1587

Solution: by assumption, we again have an 𝑀/𝑀/1/GD/∞/∞ queuing

system, with 𝜆 = 7.5 cars/hr and 𝜇 = 60/4 = 15 cars/hr. Thus, 𝜌 =

7.5/15 = 1/2.

1. By definition, 𝐿 = 𝜆/(𝜇− 𝜆) = 7.5/(15 − 7.5) = 1 and𝑊 = 1/7.5 ≈
0.13 hr = 7.8 min. Hence, in this situation, everything is under

control, and long lines appear to be unlikely.

2. Under the panic buying scenario, 𝜆 = 2(7.5) = 15 cars/hr as each

car owner now fills up twice as often, and 𝜇 = 60 · 3/10 = 18

cars/hr, so 𝜌 = 𝜆/𝜇 = 5/6. In that scenario,

𝐿 =
𝜌

1 − 𝜌
= 5 cars, and 𝑊 =

𝐿

𝜆
=

5

15

= 20 min.

Thus, panic buying has more than doubled the wait time in line. In

a 𝑀/𝑀/1 queueing system, we have

𝐿 =
𝜌

1 − 𝜌
= −1 + 1

1 − 𝜌
,

and it is easy to see that 𝐿→ ∞ as 𝜌 → 1. The 5−fold increase in 𝐿

when 𝜌 jumps from 1/2 to 5/6 (with accompanying jumps in𝑊)

illustrates that fact.

𝜌 𝐿 in a 𝑀/𝑀/1 queue

0.30 0.43

0.60 1.50

0.80 4.00

0.90 9.00

0.95 19.00

0.99 99.00

24.4.2 Limited Capacity

In the real world, queues never become infinite – they are limited due to

requirements of space and/or time, or service operating policy. Such a

queuing model falls under the purview of finite queues.

Finite queue models restrict the number of customers allowed in the

service system. Let 𝑁 represent the maximum allowable number of

customers in the system. If the system is at capacity, the arrival of a

(𝑁 + 1)th customer results in a failure to enter the queue – the customer

is assumed to balk and depart without seeking service.

Finite queues can also be modeled as a birth-death process, but with a

slight modification in its parameters:

𝜆 𝑗 = 𝜆, 𝑗 = 0, 1, 2, . . . , 𝑁 − 1

𝜆𝑁 = 0, 𝜇0 = 0

𝜇𝑗 = 𝜇, 𝑗 = 1, 2, 3, . . . , 𝑁.

The restriction 𝜆𝑁 = 0 is what sets this model apart from the 𝑀/𝑀/1/∞.

It makes it impossible to reach a state greater than 𝑁 . Because of this

1588 24 Queueing Models

restriction, a steady-state always exist because even if 𝜆 ≥ 𝜇, there can

never be more than 𝑁 customers in the system.

Mathematically, this has the effect of replacing the infinite series linking

the 𝜋 𝑗 ’s by a finite geometric series, which always converges:

𝜋0 + 𝜋1 + + · · · + 𝜋𝑁 = 𝜋0(1 + 𝜌 + · · · + 𝜌𝑁) = 1,

from which we can derive

𝜋0 ·
1 − 𝜌𝑁+1

1 − 𝜌
= 1 =⇒ 𝜋0 =

1 − 𝜌

1 − 𝜌𝑁+1

=⇒ 𝜋 𝑗 =

{
𝜌 𝑗

1−𝜌
1−𝜌𝑁+1

for 𝑗 = 0, . . . , 𝑁

0 for 𝑗 > 𝑁

Since 𝐿 =
∑𝑁
𝑗=0

𝑗 · 𝜋 𝑗 (why?),

𝐿 =
𝜌[1 + 𝑁𝜌𝑁+1 − (𝑁 + 1)𝜌𝑁]

(1 − 𝜌)
(
1 − 𝜌𝑁+1

)
when 𝜆 ≠ 𝜇. As in the 𝑀/𝑀/1/∞ queue, 𝐿𝑠 = 1−𝜋0, and 𝐿𝑞 = 𝐿− 𝐿𝑠 .

In a finite capacity model, only 𝜆 − 𝜆𝜋𝑁 = 𝜆 (1 − 𝜋𝑁) arrivals per unit

time actually enter the system on average (𝜆 arrive, but 𝜆𝜋𝑁 find the

system full). With this fact,

𝑊 =
𝐿

𝜆 (1 − 𝜋𝑁)
and 𝑊𝑞 =

𝐿𝑞

𝜆 (1 − 𝜋𝑁)
.

What does that look like in practice?

Example: consider a one-man barber shop with a total of 10 seats. Assume,

as has always been the case so far (but need not be), that inter-arrival

times are exponentially distributed with an average of 20 prospective

customers arriving each hour at the shop. Those customers who find the

shop full do not enter (perhaps they do not like standing). The barber

takes an average of 12 minutes to cut each customer’s hair; assume that

haircut times are also exponentially distributed.

1. On average, how many haircuts per hour will the barber complete?

2. On average, how much time will be spent in the shop by a customer

who enters?

Solution:

1. A fraction 𝜋10 of all arrivals will find the shop full, so that only an

average of 𝜆 (1 − 𝜋10) will actually enter the shop each hour. All

entering customers receive a haircut, so the barber will give an

average of 𝜆 (1 − 𝜋10) haircuts per hour. In this scenario, 𝑁 = 10,

𝜆 = 20 customers/hr, and 𝜇 = 60/12 = 5 customers/hr. Thus

𝜌 = 20/5 = 4 and we have

𝜋0 =
1 − 𝜌

1 − 𝜌𝑁+1

=
1 − 4

1 − 4
11

≈ 7.15 × 10
−7

and

𝜋10 = 4
10𝜋0 =

3

4

(from formula in opposite column).

24.5 𝑀/𝑀/𝑐 Queueing Systems 1589

In that case, an average of 20(1 − 3/4) = 5 customers per hour

will receive haircuts. This means that an average of 20 − 5 = 15

prospective customers per hour will not enter the shop.

2. To determine𝑊 , we must first compute

𝐿 =
4[1 + (10)411 − (11)410]

(1 − 4) (1 − 4
11)

= 9.67.

Using the formulas described above, we obtain

𝑊 =
𝐿

𝜆 (1 − 𝜋10)
=

9.67

5

= 1.93 hr.

This barber shop is quite crowded – the barber would be well-

advised to hire at least one more barber!

But what would be the effect of hiring a second barber?

In order to answer this question, we need to look into 𝑀/𝑀/𝑐 queueing

systems.

24.5 𝑀/𝑀/𝑐 Queueing Systems

An 𝑀/𝑀/𝑐/GD/∞ queueing system also has exponential inter-arrival

and service times, with rates 𝜆 and 𝜇, respectively. What sets this system

apart is that there are now 𝑐 > 1 servers willing to serve from a single line

of customers, perhaps like one would find in a bank (see Figure 24.7).

If 𝑗 ≤ 𝑐 customers are present in the system, then every customer is being

served and there is no wait time; if 𝑗 > 𝑐 customers are in the system,

then 𝑐 customers are being served and the remaining 𝑗 − 𝑐 customers are

waiting in the queue. To model this as a birth-death process, we have

to observe that the death rate is dependent on how many servers are

actually being used.

If each server completes service at a rate of 𝜇 (which may not be the case

in practice as there might be variations in servers, at least for human

servers), then the actual death rate is 𝜇× the number of customers

actually being served. The parameters for this process are

𝜆𝑛 = 𝜆, 𝑛 = 0, 1, 2, . . .

𝜇𝑛 =

{
𝑛𝜇, 𝑛 = 0, 1, 2, . . . , 𝑐

𝑐𝜇, 𝑛 = 𝑐 + 1, 𝑐 + 2, . . .

The traffic intensity for the 𝑀/𝑀/𝑐 system is 𝜌 = 𝜆/(𝑐𝜇) and the steady-

state solution is

𝜋𝑛 =

{
(𝑐𝜌)𝑛
𝑛!

𝜋0 , 1 ≤ 𝑛 ≤ 𝑐
𝑐𝑐𝜌𝑛

𝑐! 𝜋0 , 𝑛 ≥ 𝑐

where

𝜋0 =

[
1 + (𝑐𝜌)𝑐

𝑐! (1 − 𝜌) +
𝑐−1∑
𝑛=1

𝑐𝜌𝑛

𝑛!

]−1

.

1590 24 Queueing Models

Figure 24.7: Generic 𝑀/𝑀/𝑐 queue.

Note that, as was the case in a 𝑀/𝑀/1 system, if 𝜌 ≥ 1, there can be no

steady state – in other words, if the arrival rate is at least as large as the

maximum possible service rate (𝜆 ≥ 𝑐𝜇), then the system “blows up”.

There might be a desire to ensure that customers do not wait in line an

inordinate amount of time, but there might also be a desire to minimize

the amount of time for which at least one of the server is idle. In a𝑀/𝑀/𝑐
queueing system, this steady-state probability is given by

𝑃(𝑛 ≥ 𝑐) = (𝑐𝜌)𝑐

𝑐! (1 − 𝜌)𝜋0.

This table shows the probabilities 𝑃(𝑛 ≥ 𝑐) that all servers are busy in an

𝑀/𝑀/𝑐 system for 𝑐 = 2, . . . , 7 and 0.1 ≤ 𝜌 ≤ 0.95 [9, p.1088].

𝜌 𝑐 = 2 𝑐 = 3 𝑐 = 4 𝑐 = 5 𝑐 = 6 𝑐 = 7

.10 .02 .00 .00 .00 .00 .00

.20 .07 .02 .00 .00 .00 .00

.30 .14 .07 .04 .02 .01 .00

.40 .23 .14 .09 .06 .04 .03

.50 .33 .24 .17 .13 .10 .08

.55 .39 .29 .23 .18 .14 .11

.60 .45 .35 .29 .24 .20 .17

.65 .51 .42 .35 .30 .26 .21

.70 .57 .51 .43 .38 .34 .30

.75 .64 .57 .51 .46 .42 .39

.80 .71 .65 .60 .55 .52 .49

.85 .78 .73 .69 .65 .62 .60

.90 .85 .83 .79 .76 .74 .72

.95 .92 .91 .89 .88 .87 .85

Cumbersome calculations, using𝑊𝑠 =
1

𝜇 , yield

𝐿𝑞 =
𝜌

1 − 𝜌
𝑃(𝑛 ≥ 𝑐), 𝑊𝑞 =

𝐿𝑞

𝜆
, 𝑊 =

1

𝜇
+𝑊𝑞 , 𝐿 =

𝜆
𝜇
+ 𝐿𝑞 .

24.5 𝑀/𝑀/𝑐 Queueing Systems 1591

Example: consider, for instance, a bank with two tellers. An average

of 80 customers arrive at the bank each hour and wait in a single

line for an idle teller. For this specific bank, the average service time

is 1.2 minutes. Assume that inter-arrival times and service times are

exponential. Determine:

1. The expected number of customers in the bank.

2. The expected length of time a customer spends in the bank.

3. The fraction of time that a particular teller is idle.

Solutions: we are dealing with an 𝑀/𝑀/2 system with 𝜆 = 80 cus-

tomers/hr and 𝜇 = 50 customers/hr. Thus, 𝜌 = 80

2·50
= 0.80 < 1 and the

steady-state exists.

1. From the above table, 𝑃(𝑛 ≥ 2) = 0.71, from which we compute

𝐿𝑞 = 𝑃(𝑛 ≥ 2) · .8

1 − .8 = 2.84 customers

𝐿 =
80

50

+ 𝐿𝑞 = 4.44 customers.

2. We know that𝑊 = 𝐿
𝜆 = 4.44

80
= 0.055 hr = 3.3 min.

3. To determine the fraction of time that a particular server is idle,

note that tellers are idle during all moments when 𝑛 = 0, and half

the time (by symmetry) when 𝑛 = 1. The probability that a server

is idle is thus given by 𝜋0 + 0.5𝜋1. But

𝜋0 =

[
1 + (2 · .8)2

2! (1 − .8) +
2−1∑
𝑛=1

2 · .8𝑛
𝑛!

]−1

=
1

9

and

𝜋1 =
1.6

1!

𝜋0 = 0.176

and so the probability that particular teller is idle is 0.111 +
0.5(0.176) = 0.199.

Important Note: general queueing models are not understood to the

same extent as 𝑀/𝑀/1 (and 𝑀/𝑀/𝑐 to a lesser extent), and their

given performance measurements may only be approximate and highly-

dependent on the specifics of the problem at hand.

For this reason, 𝑀/𝑀/𝑐 models are sometimes used even when their use

is not supported by the data (the situation is not unlike the widespread

use of the normal distribution in a variety of probability and statistics

problems).

In numerous applications, the empirical distributions of arrivals and

service times are nearly Poisson and exponential, respectively, so that

the assumption is not entirely off the mark, but numerical simulations

should not be eschewed when departures from the 𝑀/𝑀/𝑐 model are

too pronounced.

1592 24 Queueing Models

24.6 Exercises

The Borealian Aeronautic Security Agency (BASA) runs pre-board screening of passengers and crew for all

flights departing the nation’s airfields. There are 4 Major Airfields:

Auckland

Chebucto

Saint-François

Queenston

The screening process (PBS) is structurally similar at each airfield:

1. Passengers arrive at the beginning of the main queue

2. Boarding passes may or may not be scanned at S_1

3. Passengers enter the main queue

4. Boarding passes are scanned at S_2

5. Passengers are directed to a server entry position

6. Passengers and carry-on luggage are screened by a server

Some factors influence the PBS wait time, including:

schedule intensity of departing flights

passenger volume on these flights

number of servers and processing rates at a given airfield, etc.

There might also be:

yearly, seasonal, time-of-day, day-of-week interaction effects (among others) depending on the airfield,

the flight destination, etc.

trend level shifts in the number of passengers, flights, destinations, etc.

Datasets: 20262030.csv , BASA_AUC_2028_912.csv , dat_F_sub.csv , dat_P_sub_c.csv .

1. Build a data dictionary for the datasets

2. Explore and visualize the datasets

3. Perform a queueing model analysis to predict the wait times at each airfield for which you have data.

Use the CATSA case study to inform your analysis [2].

Chapter References
[1] R. Berry. Queueing Theory and Applications. 2nd. PWS/Kent Publishing, 2002.

[2] P. Boily and J. Schellinck. Introduction to Quantitative Consulting. Quadrangle/Data Action Lab, 2025.

[3] A.K. Erlang. ‘The theory of probabilities and telephone conversations’. In: Nyt Tidsskrift for Matematik B
(1909).

[4] D.G. Kendall. ‘Stochastic Processes Occurring in the Theory of Queues and their Analysis by the

Method of the Imbedded Markov Chain’. In: The Annals of Mathematical Statistics 24.3 (1953), pp. 338–354.

doi: 10.1214/aoms/1177728975.

[5] L. Kleinrock. Queueing Systems, Volume I. Wiley-Interscience. Wiley, 1974.

[6] ‘Management Science and the Gas Shortage’. In: Interfaces 4.4 (Aug. 1974), pp. 47–51.

[7] C. Newell. Applications of Queueing Theory. Ettore Majorana International Science Series. Springer

Netherlands, 2013.

[8] S.M. Ross. Introduction to Probability Models. 11th ed. San Diego, CA, USA: Academic Press, 2014.

[9] W.L. Winston. Operations Research: Applications and Algorithms. Cengage Learning, 2022.

https://www.data-action-lab.com/wp-content/uploads/2020/09/years20262030.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/BASA_AUC_2028_912.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/dat_F_sub.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/dat_P_sub_c.csv
https://doi.org/10.1214/aoms/1177728975

Bayesian Data Analysis 25
25.1 Plausible Reasoning . . . 1593

Rules of Probability 1594
Bayes’ Theorem 1596
Bayesian Inference Basics 1598
Bayesian Data Analysis . 1600

25.2Simple Examples 1601
The Mysterious Coin 1601
The Salary Question . . . 1603
Money ($ Bill Y’All) 1607

25.3 Prior Distributions 1614
Conjugate Priors 1614
Uninformative Priors . . . 1615
Informative Priors 1616
Maximum Entropy Priors 1620

25.4 Posterior Distributions . . 1623
High-Density Intervals . . 1624
MCMC Methods 1626
The MH Algorithm 1626

25.5 Additional Topics 1633
Uncertainty 1633
Bayesian A/B Testing . . . 1635

25.6 Exercises 1639
Chapter References 1642

by Patrick Boily and Ehssan Ghashim

Bayesian analysis is sometimes maligned by data analysts, due in part to

the perceived element of arbitrariness associated with the selection of a

meaningful prior distribution for a specific problem and the (formerly

formidable) difficulties involved with producing posterior distributions

for all but the simplest situations.

On the other hand, it has been said that “while classical data analysts

need a large bag of clever tricks to unleash on their data, Bayesians only

ever really need one.” With the advent of efficient numerical samplers,

modern data analysts cannot shy away from adding the Bayesian arrow

to their quiver.

In this chapter, we introduce the basic concepts underpinning Bayesian

analysis, and we present a small number of examples that illustrate the

strengths of the approach.

25.1 Plausible Reasoning

“A decision was wise, even though it lead to disastrous

consequences, if the evidence at hand indicated it was the best

one to make; and a decision was foolish, even though it lead

to the happiest possible consequences, if it was unreasonable

to expect those consequences.” Herodotus, in Antiquity

Consider the following scenario [9]: while walking down a deserted

street at night, you hear a security alarm, look across the street, and see a

store with a broken window, from which a person wearing a mask crawls

out with a bag full of smart phones.

The natural reaction might be to conclude that the person crawling out

of the store is stealing merchandise from the store.

It might be the natural reaction, but how do we actually come to this

conclusion? It cannot come from a logical deduction based on evidence.
1

1: Such as would be used in mathematical

reasoning.

Indeed, the person crawling out of the store could have been its owner

who, upon returning from a costume party, realized that they had

misplaced their keys just as a passing truck was throwing a brick in the

store window, triggering the security alarm. Perhaps the owner then

went into the store to retrieve items before they could be stolen, which is

when you happened unto the scene.

1594 25 Bayesian Data Analysis

Figure 25.1: Deductive (left) vs. inductive

(right) syllogisms.

But while the original reasoning process is not deductive, it is at least

plausible, which in the logical context is called inductive.

We might also want to use a weaker version of inductive reasoning: let us

say that we know that when 𝐴 is true, then 𝐵 is more plausible, and we

also know that 𝐵 is true. Then, we conclude that 𝐴 is more plausible.

In the scenario described at the start of the section, if “the person is a

thief” (𝐴 is true), you would not be surprised to “see them crawling out

of the store with a bag of phones” (𝐵 is plausible). As you do “see them

crawling out of the store with a bag of phones” (𝐵 is true), you would

therefore not be surprised to find out that “the person is a thief” (𝐴 is

plausible).

In deductive reasoning, we work from a cause to possible consequences;

in inductive reasoning, we work from observations to possible causes.

Figure 25.2: Deductive (left) vs. inductive (right) reasoning.

Plausibility relies on the notion of “surprise”. In Tom Stoppard’s 1966

play Rosencrantz and Guildenstern are Dead [15], Rosencrantz flips 92 heads

in a row. This result is of course not impossible, but is it plausible? If this

happened to you, what would you conclude?

25.1.1 Rules of Probability

Inductive reasoning requires methods to evaluate the validity of various

propositions.

In 1763, Thomas Bayes [1] published a paper on the problem of induction,

that is, on arguing from the specific to the general. In modern language

and notation, Bayes wanted to use binomial data comprising 𝑟 successes

25.1 Plausible Reasoning 1595

out of 𝑛 attempts to learn about the underlying chance 𝜽 of each attempt

succeeding. Bayes’ key contribution was to use a probability distribution

to represent uncertainty about 𝜽. This distribution represents epistemio-
logical uncertainty, due to lack of knowledge about the world, rather than

aleatory (random) probability arising from the essential unpredictability

of future events, as may be familiar from games of chance.

In this framework, a probability (plausibility) represents a ‘degree-of-

belief’ about a proposition; the probability of an event will be recorded

differently by two different observers, based on the respective background

information to which they have access. This Bayesian position was the

commonplace view of probabilities in the late 1700s and early 1800s, a

view shared by such luminaries as Bernoulli and Laplace.
2

2: Modern Bayesian statistics is still based

on formulating probability distributions to

express uncertainty about unknown quan-

tities. These can be underlying parameters

of a system (induction) or future observa-

tions (prediction). Bayesian statistics is

a system for describing epistemiological

uncertainty using the mathematical lan-

guage of probability; Bayesian inference
is the process of fitting a probability model

to a set of data and summarizing the result

with a probability distribution on the pa-

rameters of the model and on unobserved

quantities (such as predictions).

Subsequent scholars found this vague and subjective,
3

and they redefined

3: How can you be sure that my degree-

of-belief matches yours?

the probability of an event as its long-run relative frequency, given

infinite repeated trials (the so-called frequentist position).

A forecast calling for rain with 90% probability doesn’t mean the same

thing to Bayesians and frequentists:

in the Bayesian framework, this means that the forecaster is 90%

certain that it will rain;

in the frequentist framework, this means that, historically, it rained

in 90% of the cases when the conditions were as they currently are.

The Bayesians framework is more aligned with how humans understand

probabilities,
4

but how can we be certain that the degree-of-belief is a 4: 92 heads in a row must mean that that

the coin is biased, right?
well-defined concept?

As it happens, there is a well-defined way to determine the rules of

probability, based on a small list of axioms [3, 9]:

1. if a conclusion can be reasoned out in more than one way, then

every possible way must lead to the same result;

2. all (known) evidence relevant to a question must be taken into

consideration;

3. equivalent states of knowledge must be assigned the same proba-

bilities;

4. if we specify how much we believe something is true, we have

implicitly specified how much we believe it’s false, and

5. if we have specified our degree-of-belief in a first proposition, and

then our degree-of-belief in a second proposition if we assume the

first one is true, then we have implicitly specified our simultaneous

degree-of-belief in both propositions being true.

In what follows, we let 𝐼 denote relevant background information; 𝑋, 𝑌,

and 𝑌𝑘 denote various propositions, and −𝑋 or 𝑋 denote the negation of

proposition 𝑋.

The plausibility of 𝑋 given 𝐼 is denoted by 𝑃(𝑋 | 𝐼); it is a real number

whose value can range from 0 (false) to 1 (true). The rules of probability

are quite simple:

Sum Rule: for all propositions 𝑋, 𝑃(𝑋 | 𝐼) + 𝑃(−𝑋 | 𝐼) = 1;

Product Rule: for all 𝑋, 𝑌, 𝑃(𝑋,𝑌 | 𝐼) = 𝑃(𝑋 | 𝑌; 𝐼) × 𝑃(𝑌 | 𝐼).

From these two rules, we can also derive two useful corollaries:

1596 25 Bayesian Data Analysis

Bayes’ Theorem: 𝑃(𝑋 | 𝑌; 𝐼) × 𝑃(𝑌 | 𝐼) = 𝑃(𝑌 | 𝑋; 𝐼) × 𝑃(𝑋 | 𝐼)
(see next section);

Marginalization Rule: 𝑃(𝑋 | 𝐼) = ∑
𝑘 𝑃(𝑋,𝑌𝑘 | 𝐼), where {𝑌𝑘} are

exhaustive and disjoint.
5

5: Which is to say,

∑
𝑘 𝑃(𝑌𝑘 | 𝐼) = 1 and

𝑃(𝑌𝑗 , 𝑌𝑘 | 𝐼) = 0 for all 𝑗 ≠ 𝑘).

For continuous variables, the marginalization rule becomes

𝑃(𝑋 | 𝐼) =
∫
Ω(𝑌)

𝑃(𝑋,𝑌 | 𝐼) 𝑑𝑌.

The conditional probability of 𝐴 given 𝐵, 𝑃(𝐴 | 𝐵) is the probability of

𝐴 taking place given that another event 𝐵 has occurred:

𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴, 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) =

𝑃(𝐴 ∩ 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) .

The probability that two events 𝐴 and 𝐵 both occur simultaneously is

obtained by applying the multiplication rule:

𝑃(𝐴, 𝐵 | 𝐼) = 𝑃(𝐵 | 𝐼) × 𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴 | 𝐼) × 𝑃(𝐵 | 𝐴; 𝐼),

which we recognize as Bayes’ Rule.

Classical Example: a family has two puppies that are not twins. What is

the probability that the youngest puppy is female given that at least one

of the puppies is female?
6

6: Assume that male and female puppies

are equally likely to be born.

Solution: our answer to this question follows a frequentist approach – we

generate trials and identify successful events. There are 4 possibilities:

{MM,MF, FM, FF}.

Let 𝐴 and 𝐵 be the events that the youngest puppy is female and that at

least one puppy is female, respectively; then

𝐴 | 𝐼 = {FF,MF} and 𝐵 | 𝐼 = {FF,MF, FM},

=⇒ 𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐴 ∩ 𝐵 | 𝐼)
𝑃(𝐵 | 𝐼) =

2/4

3/4

= 2/3.

25.1.2 Bayes’ Theorem

Bayes’ Theorem provides an expression for the conditional probability

of 𝐴 given 𝐵, that is:

𝑃(𝐴 | 𝐵; 𝐼) = 𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼)
𝑃(𝐵 | 𝐼)

=
𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼)

𝑃(𝐵 | 𝐴; 𝐼) × 𝑃(𝐴 | 𝐼) + 𝑃(𝐵 | −𝐴; 𝐼) × 𝑃(−𝐴 | 𝐼) ,

which is a direct application of the Law of Total Probability.

Bayes’ Theorem can be thought of as a way of coherently updating
our uncertainty in the light of new evidence. The use of a probability

distribution as a ‘language’ to express our uncertainty is not an arbitrary

choice: it can in fact be determined from deeper principles of logical

reasoning or rational behaviour.

25.1 Plausible Reasoning 1597

Example: consider a medical clinic (in what follows, we drop the explicit

dependence on 𝐼 to lighten the notation, but it is important to remember

that it is there nonetheless).

𝐴 could represent the event “Patient has liver disease.” Past data

suggests that 10% of patients entering the clinic have liver disease:

𝑃(𝐴) = 0.10.

𝐵 could represent the litmus test “Patient is alcoholic.” Perhaps 5%

of the clinic’s patients are alcoholics: 𝑃(𝐵) = 0.05.

𝐵 | 𝐴 could represent the scenario that a patient is alcoholic, given

that they have liver disease: perhaps we have 𝑃(𝐵 | 𝐴) = 0.07, say.

According to Bayes’ Theorem, then, the probability that a patient has

liver disease assuming that they are alcoholic is

𝑃(𝐴 | 𝐵) = 0.07 × 0.10

0.05

= 0.14

While this is a (large) increase over the original 10% suggested by past

data, it remains unlikely that any particular patient has liver disease.

Bayes’ Theorem with Multiple Events Let 𝐷 represent some observed

data and let 𝐴, 𝐵, and 𝐶 be mutually exclusive (and exhaustive) events

conditional on 𝐷. Note that

𝑃(𝐷) = 𝑃(𝐴 ∩ 𝐷) + 𝑃(𝐵 ∩ 𝐷) + 𝑃(𝐶 ∩ 𝐷)
= 𝑃(𝐷 | 𝐴)𝑃(𝐴) + 𝑃(𝐷 | 𝐵)𝑃(𝐵) + 𝑃(𝐷 | 𝐶)𝑃(𝐶).

According to Bayes’ theorem,

𝑃(𝐴 | 𝐷) = 𝑃(𝐷 | 𝐴)𝑃(𝐴)
𝑃(𝐷)

=
𝑃(𝐷 | 𝐴)𝑃(𝐴)

𝑃(𝐷 | 𝐴)𝑃(𝐴) + 𝑃(𝐷 | 𝐵)𝑃(𝐵) + 𝑃(𝐷 | 𝐶)𝑃(𝐶) .

In general, if there are 𝑛 exhaustive and mutually exclusive outcomes

𝐴1 , ..., 𝐴𝑛 , we have, for any 𝑖 ∈ {1, ..., 𝑛}:

𝑃(𝐴𝑖 | 𝐷) = 𝑃(𝐴𝑖)𝑃(𝐷 | 𝐴𝑖)∑𝑛
𝑘=1

𝑃(𝐴𝑘)𝑃(𝐷 | 𝐴𝑘)

The denominator is simply 𝑃(𝐷), the marginal distribution of the data.

Note that, if the values of 𝐴𝑖 are portions of the continuous real line, the

sum may be replaced by an integral.

Example: In the 1996 General Social Survey, for males (age 30+):

11% of those in the lowest income quartile were college graduates.

19% of those in the second-lowest income quartile were college

graduates.

31% of those in the third-lowest income quartile were college

graduates.

53% of those in the highest income quartile were college graduates.

What is the probability that a college graduate falls in the lowest income

quartile?

1598 25 Bayesian Data Analysis

Solution: let 𝑄𝑖 represent the income quartiles (𝑃(𝑄𝑖) = 0.25) and 𝐷

represent the event that a male over 30 is a college graduate. Then

𝑃(𝑄1 | 𝐷) = 𝑃(𝐷 | 𝑄1)𝑃(𝑄1)∑
4

𝑘=1
𝑃(𝑄𝑘)𝑃(𝐷 | 𝑄𝑘)

=
(0.11)(0.25)

(0.11 + 0.19 + 0.31 + 0.53)(0.25) = 0.09.

25.1.3 Bayesian Inference Basics

Bayesian statistical methods start with existing prior beliefs, and update

these using data to provide posterior beliefs, which may be used as the

basis for inferential decisions:

𝑃(𝜽 | 𝐷)︸ ︷︷ ︸
posterior

= 𝑃(𝜽)︸︷︷︸
prior

×𝑃(𝐷 | 𝜽)︸ ︷︷ ︸
likelihood

/𝑃(𝐷)︸︷︷︸
evidence

,

where the evidence is

𝑃(𝐷) =
∫

𝑃(𝐷 | 𝜽)𝑃(𝜽)𝑑𝜽 or 𝑃(𝐷) =
∑
𝑘

𝑃(𝐷 | 𝐴𝑘)𝑃(𝐴𝑘),

where {𝐴𝑘} is mutually exclusive and exhaustive.

In the vernacular of Bayesian data analysis (BDA),

the prior, 𝑃(𝜽), represents the strength of the belief in 𝜽 without

taking the observed data 𝐷 into account;

the posterior, 𝑃(𝜽 | 𝐷), represents the strength of our belief in 𝜽
when the observed data 𝐷 is taken into account;

the likelihood, 𝑃(𝐷 | 𝜽), is the probability that the observed data

𝐷 would be generated by the model with parameter values 𝜽, and

the evidence, 𝑃(𝐷), is the probability of observing the data 𝐷

according to the model, determined by summing (or integrating)

across all possible parameter values and weighted by the strength

of belief in those parameter values.

Central Data Analysis Question Bayes’ Theorem allows is an essential

component of the scientific method and knowledge discovery in general.

Indeed, assume that an experiment has been conducted to determine

the degree of validity of a particular hypothesis, and that corresponding

experimental data has been collected.

The central data analysis question is the following: given everything

that was known prior to the experiment, does the collected data support

(or invalidate) the hypothesis?

Given everything that was known prior to the experiment, does the

collected/observed data support (or invalidate) the hypothesis/presence

of a certain condition?

The problem is that this is usually impossible to compute directly. Bayes’

Theorem offers a possible solution:

𝑃(hypothesis | data; 𝐼) = 𝑃(data | hypothesis; 𝐼) × 𝑃(hypothesis | 𝐼)
𝑃(data | 𝐼)

∝ 𝑃(data | hypothesis; 𝐼) × 𝑃(hypothesis | 𝐼);

25.1 Plausible Reasoning 1599

the hope is that the terms on the right might be easier to compute than

those on the left:

𝑃(hypothesis | 𝐼) is the degree-of-belief that the hypothesis is true,

prior to the experiment;
𝑃(hypothesis | data; 𝐼) is the degree-of-belief that the hypothesis

is true, after the experimental data is taken into account;
𝑃(data | hypothesis; 𝐼) is the probability of observing experimental

data, assuming that the hypothesis is true, and

𝑃(data | 𝐼) is the probability of the experimental data being ob-

served, independently of the hypothesis.

The theorem is often presented as

posterior =
likelihood × prior

evidence

∝ likelihood × prior,

i.e., beliefs should be updated in the presence of new information.

Example: “Most of us would have assigned almost no probability to

terrorists crashing planes into buildings in Manhattan when we woke up

on 9/11. But we recognized that a terror attack was an obvious possibility

once the first hit the World Trade Center. And we had no doubt we were

being attacked once the second tower was hit.” [14]

Let 𝐴 represent the proposition that a plane crashes into Manhattan

skyscrapers. Let 𝐵 represent the proposition that terrorists would attack

Manhattan skyscrapers; before 2001, most people would only have

assigned a miniscule probability to such an event, say 0.005%. There had

been two incidents of planes crashing into Manhattan skyscrapers in

the previous 25,000 days before September 11, 2001, so we might assign

𝑃(𝐴 | −𝐵; 𝐼) = 0.008%.

We could also assign a fairly high probability of a plane hitting a

Manhattan skyscraper if terrorists were attacking said skyscrapers, say

𝑃(𝐴 | 𝐵; 𝐼) = 95%.

After one plane hitting the World Trade Center, our revised estimate of

the probability of a terror attack now stands at roughly 37. If a second

plane hits the World Trade Center shortly after the first one, the posterior

probability of a terror attack now jumps to a whopping 99.99%.

Determining an appropriate prior is a source of considerable controversy.

Conservative estimates (uninformative priors) often lead to reasonable

1600 25 Bayesian Data Analysis

results, but in the absence of relevant information, it might be preferable

to use maximum entropy priors (see Section 25.3).

The evidence is harder to compute on theoretical grounds – evaluating

the probability of observing data requires access to some model as part

of 𝐼. Either that model was good, so there’s no need for a new hypothesis,

or that model was bad, so we dare not trust our computation.
7

7: Thankfully, the evidence is rarely re-

quired on problems of parameter estima-
tion: prior to the experiment, there are

numerous competing hypotheses; while

the priors and likelihoods will differ, the

evidence will not, so it is not needed to

differentiate the various hypotheses.

25.1.4 Bayesian Data Analysis

The main characteristic of Bayesian methods is their explicit use of

probability for quantifying uncertainty in inferences based on statistical

data analysis. The process of Bayesian data analysis (BDA) can be

idealized by dividing it into the following 3 steps:

1. Setting up a full probability model (the prior) – a joint probability

distribution for all observable and unobservable quantities in a

problem. The model should be consistent with knowledge about

the underlying scientific problem and the data collection process

(when available).

2. Conditioning on observed data (new data) – calculating and inter-

preting the appropriate posterior distribution (i.e., the conditional

probability distribution of the unobserved quantities of ultimate

interest, given the observed data).

3. Evaluating the fit of the model and the implications of the resulting

posterior distribution (the posterior) – how well does the model

fit the data? Are the substantive conclusions reasonable? How

sensitive are the results to the modeling assumptions made in step 1?

Depending on the responses, one can alter or expand the model

and repeat the 3 steps.

The essence of Bayesian methods consists in identifying the prior beliefs
about what results are likely, and then updating those according to the

collected data.

For example, if the current success rate of a gambling strategy is 5%,

we may say that it’s reasonably likely that a small strategy modification

could further improve that rate by 5 percentage points, but that it is most

likely that the change will have little effect, and that it is entirely unlikely

that the success rate would shoot up to 30%.
8

8: After all, it is only a small modification.

25.2 Simple Examples 1601

As the data comes in, we update our beliefs. If the incoming data points

to an improvement in the success rate, we move our prior estimate of the

effect upwards; the more data we collect, the more confident we are in

the estimate of the effect and the further we can leave the prior behind.

The end result is called the posterior – a probability distribution describ-

ing the likely effect of the strategy.

25.2 Simple Examples

We take a look at three scenarios that will shed some light on the whole

Bayesian entreprise:
9

9: These examples will showcase how pri-

ors, likelihood, and posteriors interact.

determining if a coin is fair (or not),

finding a link between demographic information and salary, and

estimating the number of dollar bills in circulation.

25.2.1 The Mysterious Coin

A mysterious stranger brings back a souvenir coin from a trip to a strange

and distant land. They have been flipping it pretty much non-stop since

their return. You can see the proportion of heads they obtained for 4, 8,

and 16 tosses.

It might seem at first that the coin might be biased, but the proportion of

heads seems to inch its way towards 50%. What is truly going on?

1602 25 Bayesian Data Analysis

Priors Perhaps the coin is not fair, coming as it does from a strange

and distant land. Let us denote the coin’s bias by 𝐻, i.e., the probability

of flipping a head on a toss (𝐻 ≈ 0.5: regular unbiased coins; 𝐻 ≈ 0, 1:

highly biased coins). A prior for this scenario is a probability density
function (p.d.f.)

𝑃(bias = 𝐻) = 𝑃(𝐻 | 𝐼).

Four such priors are shown below.

Figure 25.3: 4 priors for the fair coin prob-

lem: no idea (top left); suspect foul play

(top right); just a regular coin (bottom left);

probably just a regular coin, but the fact

that somebody is even talking about this

is suspicious (bottom right).

Why are we working with functions for the prior, when in the previous

example (9/11 attacks), we only provided a number, 𝑃(𝐵 | 𝐼) = 0.005%?

In fact, we provided a (discrete) function as a prior:

𝑃(𝐵 = 𝑥 | 𝐼) =
{

0.005% if 𝑥 = TRUE

99.995% if 𝑥 = FALSE

Likelihood Let us assume that the coin has been tossed 𝑁 times in total,

and that 𝐾 heads have been recorded. In this scenario, Bayes’ Theorem

takes the form:

𝑃(bias = 𝐻 | 𝐾 heads, 𝑁 tosses; 𝐼) ∝ 𝑃(𝐾 heads, 𝑁 tosses | bias = 𝐻; 𝐼)
× 𝑃(bias = 𝐻 | 𝐼).

The likelihood is the probability of observing 𝐾 heads in 𝑁 tosses if the

bias is 𝐻. If, as part of 𝐼, the tosses are independent (i.e., the result of

one toss does not affect the others), then the likelihood is given by the

binomial distribution

𝑃(𝐾 heads, 𝑁 tosses | bias = 𝐻; 𝐼) =
(
𝑁

𝐾

)
𝐻𝐾(1 − 𝐻)𝑁−𝐾 .

25.2 Simple Examples 1603

Posteriors Combining the prior and the likelihood, we get:

𝑃(bias = 𝐻 | 𝐾 heads, 𝑁 tosses; 𝐼) ∝ 𝐻𝐾(1 − 𝐻)𝑁−𝐾 × 𝑃𝑖(bias = 𝐻 | 𝐼),

where 𝑖 indexes the various prior scenarios described above.

We should thus be able to estimate the bias 𝐻∗
by studying the posterior

distribution for each of the 4 priors, for various number of throws 𝑁 (see

Figure 25.4):

with the non-committal prior (blue p.d.f.)

𝑃1(bias = 𝐻 | 𝐼) ∝ 1,

the posterior is simply proportional to the likelihood; the central

limit theorem seems to kick in after ≈ 30 tosses;

with the foul play prior (green p.d.f.), we suspect early on that the

bias is smaller than 0.5; the subsequent series of tosses moves the

bias to a value 0.25 ≤ 𝐻∗ ≤ 0.40 quickly, as was the case with the

non-informative prior – note the shrinking of the posterior with an

increasing number of tosses;

with the regular coin prior (orange p.d.f.)

𝑃1(bias = 𝐻 | 𝐼) ∼ N(0.5, 𝜎2),

early results do not strongly suggest that the coin is biased (the

prior gives little credence to the notion that the bias could lie in

0.25 ≤ 𝐻∗ ≤ 0.40), but the series of tosses forces the posterior to a

biased distribution (note the smoother convergence of the posterior;

with the doubtful prior (yellow p.d.f.), the competing hypotheses

compete before converging to a bias, again in 0.25 ≤ 𝐻∗ ≤ 0.40.

The convergence is more haphazard: as soon as one head or one

tail is observed, the process nixes the two-sided coin option. Note

the slower (and weirder) convergence to a gaussian posterior.

In the fair coin example, it would seem that the choice of a prior does not

have much of an effect on the posterior . . . given enough data.

This will not always be the case.

25.2.2 The Salary Question

Income information has been collected for 4782 individuals, together

with demographic details: self-reported gender, age group, and education

level (1 for post-secondary degree, 0 otherwise). The table below shows

some of the summary statistics for the dataset; the dataset is available in

Salary.xlsx .

Question: is there a link between demographic information and income?

How would we answer this question using classical statistical methods?

What if we had reason to suspect that reported incomes follow a (po-

tentially) different distribution for each group? Would that change the

approach?

https://www.data-action-lab.com/wp-content/uploads/2019/04/Salaries.xlsx

1604 25 Bayesian Data Analysis

Figure 25.4: Posteriors for a different numbers of tosses; 4 priors, same data. After 128 tosses starting with the non-committal prior, we are

fairly certain that the coin must be biased, with 0.25 ≤ 𝐻∗ ≤ 0.40 (top left); it takes roughly 256 tosses starting with the foul play prior for

the same notion to arise (top right); after 512 tosses starting with the regular coin prior, we are fairly certain that the coin must be biased,

with 0.33 ≤ 𝐻∗ ≤ 0.40 (bottom left); which is more or less the same when starting with the doubtful prior (bottom right).

In the Bayesian framework, we are interested in the posterior distribu-

tion

𝑃(parameters | data; 𝑖 , 𝐼), 𝑖 = 1, . . . , 12.

If we assume (for no particular good reason) that the reported incomes

are normally distributed for each group, then we seek

𝑃(𝜇𝑖 , 𝜎𝑖 | reported salaries in group 𝑖; 𝐼), 𝑖 = 1, . . . , 12.

25.2 Simple Examples 1605

Figure 25.5: Two priors for the salary problem. Green represents large probabilities; red, low probabilities. The blue zones represent

marginal probabilities of higher values.

Priors Determining a reasonable collection of priors

𝑃(𝜇𝑖 , 𝜎𝑖 | 𝐼), for 𝑖 = 1, . . . , 12,

is no easy task. One could naively pick a joint distribution which

“peaks” at the sample mean 𝑥 𝑖 , with standard deviation 𝑠𝑖 , for each 𝑖,

but there are sampling design issues associated with this approach.

Why not select, instead, a prior “which expresses complete ignorance
except for the fact that 𝜇𝑖 is a location parameter and 𝜎𝑖 is a scale
parameter” [9, 11]. This translates into using a non-informative prior

𝑃1(𝜇𝑖 , 𝜎𝑖 | 𝐼) ∝ 𝜎−1

𝑖 , 𝑖 = 1, . . . , 12

(we will discuss these further in the next section).

For comparison’s sake, we will also consider the prior

𝑃2(𝜇𝑖 , 𝜎𝑖 | 𝐼) ∝ 𝜇500

𝑖 𝜎−4

𝑖 , 𝑖 = 1, . . . , 12.

The two priors are illustrated in Figure 25.5.

What could those priors represent, in the real world? What happens to

the probabilities when 𝜎𝑖 increases? When 𝜇𝑖 increases? Note, as well,

that these ”priors” are not normalizable over the positive quadrant in

(𝜇, 𝜎)−space.
10

10: The integral of these priors over the

positive quadrant is infinite.

Instead, we could only consider them over a suitable finite sub-region; or

use the fact that the product of the likelihood and the prior is normaliz-

able.

Likelihood Let us denote the number of observations in group 𝑖 by 𝑁𝑖 .

The likelihood is the probability

𝑃(reported incomes {𝑥𝑘,𝑖} in group 𝑖 | 𝜇𝑖 , 𝜎𝑖 ; 𝐼), 𝑖 = 1, . . . , 12.

We have assumed normality for any given observation. If we assume

further that all observations are independent, then

𝑃({𝑥𝑘,𝑖} | 𝜇𝑖 , 𝜎𝑖 ; 𝐼) ∝
𝑁𝑖∏
𝑘=1

𝜎−1

𝑖 exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12.

1606 25 Bayesian Data Analysis

Figure 25.6: Posteriors for the salary problem (one per prior), for group 𝑖 = 1. Green represents large probabilities; red, low probabilities.

Note the shape of the posteriors. The blue zones represent marginal probabilities of higher values.

Figure 25.7: Marginal posteriors for the salary problem (one for each of the priors), for group 𝑖 = 1. Note the differences in the distributions

for each scenario.

Posteriors Combining the prior and the likelihood, we get, for the first

prior:

𝑃1(𝜇𝑖 , 𝜎𝑖 | {𝑥𝑘,𝑖}; 𝐼)

∝ 𝜎−(𝑁𝑖+1)
𝑖

𝑁𝑖∏
𝑘=1

exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12,

while for the second prior:

𝑃2(𝜇𝑖 , 𝜎𝑖 | {𝑥𝑘,𝑖}; 𝐼)

∝ 𝜇500

𝑖 𝜎−(𝑁𝑖+4)
𝑖

𝑁𝑖∏
𝑘=1

exp

(
−(𝜇𝑖 − 𝑥𝑘,𝑖)2

2𝜎2

𝑖

)
, 𝑖 = 1, . . . , 12,

over some suitable sub-region in parameter space.

The joint posterior distributions for (𝜇1 , 𝜎1) (one for each of the priors)

when 𝑖 = 1 are shown in Figure 25.6.

We can read the likely values of each parameters for each scenario by

looking at the spikes in the marginal posteriors of Figure 25.7.

The first two examples were (somehow ashamedly) conducted with Excel;

the next example shows how we can use programmatical tools (like R) to

answer questions using Bayesian analysis.

25.2 Simple Examples 1607

25.2.3 Money ($ Bill Y’All)

The question: how many 5$ dollar bills are there in circulation?

The problem: we cannot count them all – so what do we do?

The solution: “catch-and-release”

1. Capture a few 5$ bills.

2. Mark them and put them back in circulation.

3. At some later point, capture a few 5$ bills.

4. Count how many are marked.

𝑥 = 500 bills might have been marked initially, say; 𝑦 = 300 bills might

have been re-captured at stage 3, of which 𝑤 = 127 were marked.

What is the most probable number of bills 𝑁 in circulation?

Unlike the previous examples where we were trying to estimate the

parameters from the data, we are trying to estimate data from parameters

(generative model) – we do not compute the likelihood directly.

Simple Model In the simplest model, we might proceed as follows:

Figure 25.8: Catch-and-release schematics

in the simple model.

1. We start by drawing a large random sample of # of bills 𝑁 from an

acceptable “prior” distribution on the parameters.

2. Using the 𝑁s and the generative model (with 𝑥 and 𝑦 given – the

observed values), we produce a (synthetic) # of marked bills 𝑧 in

each sample.

3. Finally, we only retain those values of 𝑁 for which 𝑧 = 𝑤.

Let us implement this in R using the values of 𝑥, 𝑦, and𝑤 provided above.

We will generate priors using 500,000 replicates:

set.seed(1) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the second capture

Since 𝑥 = 500 were first “captured”, we know that there are at least 500

bills in circulation. To keep things from getting out of hands, we select a

theoretical maximum for the number of bills in circulation.

1608 25 Bayesian Data Analysis

upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

We now draw to create the prior distribution on the possible number of

bills 𝑁bills in circulation:

N.bills = sample (x:1500, N.draw, replace=TRUE)

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

A priori, all of these are “equally likely”. Now, we use the observed

“catch-and-release” data to define the generative model, in which we

capture 𝑥 = 500 bills in the first round, and 𝑦 = 300 in the second:

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x)) # 0 for un-marked

1 for marked in the inital capture

sum(sample(bills, y)) # sampling y bills in the 2nd round

}

The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {

N.marked[i] <- pick.bills(N.bills[i])

}

In the language of the generative model, N.marked is 𝑧. Now, we only

keep those trials for which there were 𝑤 = 127 re-captured marked bills,

and retain the number of bills in circulation for these trials:

post.bills <- N.bills[N.marked == w]

Finally, we plot the posterior distribution:

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")

25.2 Simple Examples 1609

The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 4754

Min. 1st Qu. Median Mean 3rd Qu. Max.

979 1143 1188 1193 1236 1492

In other words, out of 500,000 trials, a little fewer than 5000 had the right

characteristics (𝑥, 𝑦, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset of

trials is a tad below 1200. The Bayesian situation is illustrated below.
11

11: We used a different seed, so the charts

are slightly different, but the main ideas

hold.

Model: Marked Bills are Brittle It may be the case that the process of

marking the bills might damage them somehow, so that they may be

retired sooner than one would expect (with probability 𝑢 = 90%, say).

In this case, we might proceed as follows:

1. We start by drawing a large random sample of # of bills 𝑁 from an

acceptable “prior” distribution on the parameters.

2. Using the 𝑁s and the generative model (with 𝑥, 𝑦, and 𝑢 given –

the observed values), we produce a (synthetic) # of marked bills 𝑧

in each sample.

3. Finally, we only retain those values of 𝑁 for which 𝑧 = 𝑤.

1610 25 Bayesian Data Analysis

Figure 25.9: Catch-and-release schematics

in the brittle model.

Let us implement this in R using the values of 𝑥, 𝑦, 𝑢, and 𝑤 provided

above. We will generate priors using 500,000 replicates:

set.seed(10) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the second capture

u = 0.9 # probability that marked bills will be retired

upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

N.bills = sample (x:1500, N.draw, replace=TRUE)

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

A priori, all of these are “equally likely” in the brittle scenario too. Now,

we use the observed “catch-and-release” data to define the generative

model, in which we capture 𝑥 = 500 bills in the first round, and 𝑦 = 300

in the second round, knowing that 𝑢 = 0.9 of first round marked bills

will be retired.
12

12: Would we expect there to be more bills

in circulation, given these observations, in

the brittle case or the simple case?

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x))

prob.pick <- ifelse(bills == 0, 1.0, u) # brittleness

sum(sample(bills, y, prob = prob.pick))

}

The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {

25.2 Simple Examples 1611

N.marked[i] <- pick.bills(N.bills[i])

}

Posterior distribution

post.bills <- N.bills[N.marked == w]

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")

The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 4410

Min. 1st Qu. Median Mean 3rd Qu. Max.

935 1089 1129 1132 1172 1411

In other words, out of 500,000 trials, about 4400 had the right char-

acteristics (𝑥, 𝑦, 𝑢, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset

of trials is a roughly 1130. Does this make sense, given the brittleness

assumption?

The Bayesian situation is illustrated below.
13

13: Again, the charts are slightly different

due the use of a different seed.

1612 25 Bayesian Data Analysis

Model: Listen to the Banker Let us say that an old banker thinks that

there should be about 1000 bills in circulation. How can we incorporate

this piece of information?

In this case, we might proceed as follows:

Figure 25.10: Catch-and-release schemat-

ics in the expert model.

Let us implement this in R using the values of 𝑥, 𝑦, 𝑢, and 𝑤 provided

above, as well as the expert’s best guess. We will generate priors using

500,000 replicates:

set.seed(100) # for replicability

N.draw = 500000 # number of replicates

x = 500 # number of bills marked in the initial capture

y = 300 # number of bills sampled in the second capture

w = 127 # number of marked bills in the sample

u = 0.9 # probability that marked bills will be retired

banker.mean = 1000 # banker guess

upper.limit = 1500 # maximum (theoretical) number of bills

bin.width = 50 # for plotting the posterior

We now draw to create the prior distribution on the possible number

of bills 𝑁bills in circulation, using the banker’s experience (instead of a

uniform distribution, the prior might follow a binomial distribution with

mean 1000$, say).

N.bills = rnbinom(N.draw, mu = banker.mean - x, size = w) + x

barplot(table(cut(N.bills, seq(x, upper.limit, bin.width))) /

length(N.bills), col = "gray")

pick.bills <- function(N.bills) {

bills <- rep(0:1, c(N.bills - x, x))

prob.pick <- ifelse(bills == 0, 1.0, u)

sum(sample(bills, y, prob = prob.pick)) second capture

}

25.2 Simple Examples 1613

The number of re-captured bills (for each trial) is simulated below:

N.marked <- rep(NA, N.draw)

for(i in 1:N.draw) {

N.marked[i] <- pick.bills(N.bills[i])

}

Posterior

post.bills <- N.bills[N.marked == w]

barplot(table(cut(post.bills, seq(x,upper.limit,bin.width))) /

length(post.bills), col = "blue")

The summary statistics for the posterior distribution of the number of

bills in circulation is thus:

length(post.bills)

summary(post.bills)

[1] 5258

Min. 1st Qu. Median Mean 3rd Qu. Max.

893 1031 1057 1058 1083 1209

In other words, out of 500,000 trials, about 5250 had the right char-

acteristics (𝑥, 𝑦, 𝑢, and 𝑤 as observed in the “real world”), and the

average/median number of bills in circulations for this smaller subset of

trials is a roughly 1050. Does this make sense, given the banker’s opinion

and the observations? The Bayesian situation is illustrated below.

1614 25 Bayesian Data Analysis

25.3 Prior Distributions

Specifying a model means, by necessity, providing a prior distribution

for the unknown parameters 𝜽. The prior plays a critical role in Bayesian

inference through the updating statement :

𝑃(𝜽 | 𝐷) ∝ 𝑃(𝜽) × 𝑃(𝐷 | 𝜽).

In the Bayesian approach, all unknown quantities are described proba-

bilistically, even before the data has been observed.

All priors are subjective in the sense that the decision to use a prior is

left completely up to the researcher. But the choice of priors is no more
subjective than the choice of likelihood, the selection or collection of
a sample, the estimation, or the statistic used for data reduction. The

choice of a prior can substantially affect posterior conclusions, however,

especially with small sample sizes.

25.3.1 Conjugate Priors

The main challenge of Bayesian methods is that the posterior distribution

of the vector 𝜽 might not have an analytical form. Specifically, produc-

ing marginal posterior distributions from high-dimensional posteriors

by repeated analytical integration may be difficult or even impossible

mathematically.

There are exceptions however, providing easily obtainable computational

posteriors through the use of a conjugate prior. Conjugacy is a joint

property of a prior and a likelihood implying that the posterior has the

same distributional form as the prior, but with different parameter(s).

The table below represents some common likelihoods and their conjugate

priors (an extensive list can be found in [16]).

Likelihood Prior Hyperparameters

Bernoulli Beta 𝛼 > 0, 𝛽 > 0

Binomial Beta 𝛼 > 0, 𝛽 > 0

Poisson Gamma 𝛼 > 0, 𝛽 > 0

Normal for 𝜇 Normal 𝜇 ∈ ℝ, 𝜎2 > 0

Normal for 𝜎2
Inverse Gamma 𝛼 > 0, 𝛽 > 0

Exponential Gamma 𝛼 > 0, 𝛽 > 0

For instance, if the probability of 𝑠 successes in 𝑛 trials (the likelihood)

is given by

𝑃(𝑠, 𝑛 | 𝑞) = 𝑛!

𝑠!(𝑛 − 𝑠)! 𝑞
𝑠(1 − 𝑞)𝑛−𝑠 , 𝑞 ∈ [0, 1],

and the prior probability for 𝑞 follows a Beta(𝛼, 𝛽) distribution with

𝛼 > 0, 𝛽 > 0, so that

𝑃(𝑞) = 𝑞𝛼−1(1 − 𝑞)𝛽−1

𝐵(𝛼, 𝛽) , for 𝑞 ∈ [0, 1],

25.3 Prior Distributions 1615

then the posterior distribution for 𝑞 given 𝑠 successes in 𝑛 trials follows

a Beta(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠) distribution, so that

𝑃(𝑞 | 𝑠, 𝑛) = 𝑃(𝑠, 𝑛 | 𝑞) × 𝑃(𝑞)
𝑃(𝑠, 𝑛) =

𝑞𝛼+𝑠−1(1 − 𝑞)𝛽+𝑛−𝑠−1

𝐵(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠) , for 𝑞 ∈ [0, 1].

Conjugate priors are mathematically convenient, and they can be quite

flexible, depending on the specific hyperparameters we use; but they
reflect very specific prior knowledge and should be eschewed unless
we truly possess that prior knowledge.

25.3.2 Uninformative Priors

An uninformative prior (or objective prior) is one which intentionally

provides very little specific information about the parameters of interest.

Uninformative priors are very useful from the perspective of traditional

Bayesianism seeking to mitigate the frequentist criticism of intentional
subjectivity.

The rationale for using uninformative prior distributions is often said to

be ‘to let the data speak for itself,’ so that inferences are unaffected by

information external to the current data.

A classic uninformative prior is the uniform prior. A proper uniform

prior integrates to a finite quantity and is thus normalizable. For example,

for data following a Bernoulli(𝜃) distribution, a uniform prior on 𝜃 is

𝑃(𝜃) = 1, 0 ≤ 𝜃 ≤ 1.

For data with following a 𝑁(𝜇, 1) distribution, say,
14

the uniform prior 14: Or any data with unbounded support.
on the support of 𝜇 is improper as

𝑃(𝜇) = 1, −∞ < 𝜇 < ∞

diverges; however, such a choice could still be acceptable as long as the

resulting posterior is normalizable.
15

As there are instances where an 15: Which is to say, the integral of the

posterior converges on its support.
improper prior yields an improper posterior, care is warranted.

This is also called the principle of indifference, which states that with

no evidence one way or another, degrees of belief should be distributed

equally among all the considered outcomes.
16

16: But Bertrand’s Paradox provides

doubt as to the validity of this principle.

There are plenty of situations where the uniform prior is not an appropri-

ate prior; such a prior makes assumptions about the distribution of the

parameters of interest that fall squarely in the subjective camp. The use

of uniform priors is often justified solely on the basis of convenience.
17

17: Since the posterior is then simply pro-

portional to the likelihood.

The Jeffreys prior is an approach to generate uninformative priors. For a

given random parameter 𝜽, the Jeffreys prior is

𝑃(𝜽 | 𝐼) ∝
√

det I(𝜽),

where I(𝜽) represents the Fisher information, which measures the

amount of information that an observable random variable 𝑋 implies

about an unknown parameter vector 𝜽 (i.e., we are interested in 𝑃(𝑋 | 𝜽)).

https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)

1616 25 Bayesian Data Analysis

Let 𝑓 (𝑋 | 𝜽) be the corresponding p.d.f./p.m.f.;

[
I(𝜽)

]
𝑖 , 𝑗

= −E

[
𝜕2

𝜕𝜃𝑖 𝜕𝜃𝑗
log 𝑓 (𝑋 | 𝜽)

���� 𝜽]
.

Note that the Jeffreys prior depends on underlying statitistical model:

if 𝑋 follows a normal distribution N(𝜇, 𝜎2), with 𝜎 fixed, and all

we assume is that 𝜇 is a location parameter, then the Jeffrey prior

would be

𝑃(𝜇 | 𝐼) ∝ 1,

an improper uniform distribution (all locations are equally likely

to be the mean);

if 𝑋 follows a normal distribution N(𝜇, 𝜎2), with 𝜇 fixed, and all

we assume is that 𝜎 > 0 is a scale parameter, then it would be

𝑃(𝜎 | 𝐼) ∝ 1

𝜎
,

again an improper distribution, but one for which a dispsersion 𝜎
becomes progressively less likely as it increases;

if 𝑋 follows a Poisson distribution P(𝜆) and all we assume is that

𝜆 ≥ 0, then it would be the improper distribution

𝑃(𝜆 | 𝐼) ∝ 1√
𝜆
.

In contrast, a weakly informative prior is one for which only partial
information about a variable is available; the choice of a uniform prior is

often weakly informative.

We will discuss another uninformative approach, the Maximum Entropy
prior, shortly.

25.3.3 Informative Priors

Informative priors are those that deliberately insert information that

researchers have at hand. This seems like a reasonable approach since

previous scientific knowledge should play a role in statistical inference.

However, there are two important requirements for researchers:

1. the overt declaration of prior specification, and

2. a detailed sensitivity analysis to show the effect of these priors

relative to uninformed types.

Transparency is required to avoid the common pitfall of data fishing;

sensitivity analysis can provide a sense of exactly how informative the

prior is. But where do informative priors come from, in the first place?

Generally these priors are derived from:

past studies, published work, researcher intuition;

interviewing domain experts;

convenience with conjugacy, and

non-parametric and other data-derived sources.

25.3 Prior Distributions 1617

Prior information from past studies need not be in agreement. One

useful strategy is to construct prior specifications from competing school-
of-thoughts in order to contrast the resulting posteriors and produce

informed statements about the relative strength of each of them.

Example: we have noted previously that a Bernoulli likelihood and a

Beta prior form a set of conjugate priors. For this exercise, we use the R

function BernBeta() defined in the excellent [10].
18

18: This function uses the conjugacy be-

tween the Bernoulli (likelihood) and the

Beta (prior) distributions to determine the

posterior distribution Beta for the uncer-

tainty in the fairness of the coin (1 repre-

sents a H(ead) on the flip, 0 a T(ail)). Note

that the function returns the posterior beta

values each time it is called, so returned

values can be fed back into the prior in a

subsequent function call.

1. Start with a prior distribution that expresses some uncertainty that

a coin is fair: Beta(𝜃 | 4, 4). Flip the coin once; assume that a Head

is obtained. What is the posterior distribution of the uncertainty in

the coin’s fairness 𝜃?

Solution: we know, on theoretical grounds, that the posterior

follows a

Beta(𝜃 | 4 + 1, 4 + 1 − 1; 𝐼) = Beta(𝜃 | 5, 4; 𝐼)

distribution.
19

19: The label on the 𝑦−axis of the pos-

terior distribution provides the posterior

parameters.

post = BernBeta(c(4,4) , c(1))

show(post)

[1] 5 4

1618 25 Bayesian Data Analysis

2. Use the posterior parameters from the previous flip as the prior

for the next flip. Suppose we flip again and get a H. What is the

new posterior on the uncertainty in the coin’s fairness?

Solution: on theoretical grounds, the posterior is

Beta(𝜃 | 6, 4; 𝐼),

which is shown below.

post = BernBeta(post , c(1))

show(post)

[1] 6 4

3. Using the most recent posterior as the prior for the next flip, flip a

third time and obtain yet again a H. What is the new posterior?

Solution: in this case, we know that the posterior for the coin’s

fairness follows a Beta(𝜃 | 7, 4; 𝐼) distribution.

post = BernBeta(post , c(1))

show(post)

[1] 7 4

25.3 Prior Distributions 1619

Should flipping 3 H in a row give us pause? Is there enough

evidence to suggest that 𝜃 ≠ 0.5 (i.e, that the coin is not fair)? What

if we were to flip 18 H in a row from this point on?
20

20: The modified code would yield:

Note the posterior’s bias.

When working on a problem, it can be easy to get side-tracked and

confused with the notation. In those cases, it is useful to return to the

definition of each of the terms in Bayes’ theorem (i.e., 𝑃(𝜃 | 𝐷; 𝐼), 𝑃(𝐷 | 𝐼),
𝑃(𝐷 | 𝜃; 𝐼), etc.).

Example: suppose that a friend has a coin that we know comes from

a magic store; as a result, we believe that the coin is strongly biased in

either of the two directions (it could be a trick coin with both sides being

H, for instance), but we don’t know which one it favours. We will express

the belief of this prior as a Beta distribution. Let’s say that our friend

flips the coin five times; resulting in 4 H and 1 T. What is the posterior

distribution of the coin’s fairness 𝜃?

Solution: we start with a prior that corresponds with our assumptions,

and assume 4 H and 1 T:

post = BernBeta(c(1,1)/100 , c(1,1,1,1,0))

show(post)

[1] 4.01 1.01

1620 25 Bayesian Data Analysis

This prior captures our belief that the coin is strongly biased, although

we do not know in which direction the bias lies before seeing data. The

use of 0.01 is arbitrary, in a sense; 0.1 would have worked as well, say.

The posterior distribution is

Beta(𝜃 | 4.01, 1.01; 𝐼),

which, as shown above, has its mode essentially at 1.0, and not near the

mean ≈ 0.8. Is the coin indeed biased? In which direction?

How would the answer change if we had no reason to suspect that the

coin was biased in the first place? These are all questions that could be

answered by playing with BernBeta().

25.3.4 Maximum Entropy Priors

Whether the priors are uninformative or informative, we search for the

distribution that best encodes the prior state of knowledge from a set of

trial distributions.

Consider a discrete space 𝑋 of cardinality 𝑀 with probability density

𝑃(𝑋) = p = (𝑝1 , ..., 𝑝𝑀). The entropy of such a p, denoted by 𝐻(p), is

25.3 Prior Distributions 1621

given by

𝐻(p) = −
𝑀∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 , with 0 · log(0) = 0.

In the case of a continuous p.d.f. 𝑃(X) = 𝑃(𝑋1 , . . . , 𝑋𝑛) on some domain

Ω ⊆ ℝ𝑛
, the entropy is given by

𝐻(𝑃) = −
∫
Ω

𝑃(Z) log(𝑃(Z)) 𝑑Z.

The maximum entropy principle (MaxEnt) states that, given a class of trial

distributions with constraints, the optimal prior is the trial distribution

with the largest entropy. As an example, the most basic constraint is for p
to lie in the probability simplex, that is,

∑
𝑖 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0 for all 𝑖 in

the discrete case, or

∫
Ω
𝑃(Z) 𝑑Z = 1 and 𝑃(Z) ≥ 0 on Ω in the continuous

case.

Example: without constraints, the MaxEnt principle yields a prior which

solves the optimization problem:

max −𝑝1 log 𝑝1 − · · · − 𝑝𝑀 log 𝑝𝑀
s.t. 𝑝1 + · · · + 𝑝𝑀 = 1 and 𝑝1 , . . . , 𝑝𝑀 ≥ 0

With the method of Lagrange multipliers, the optimization reduces to

p∗ = argp max{𝐻(p) − 𝜆(𝑝1 + · · · + 𝑝𝑀 − 1)},

whose solution is p∗ ∝ constant. Hence, subject to no additional con-

straints, the uniform distribution is the maximum entropy prior.

Example: use Bayesian analysis to predict the cab waiting time?

“The joke about New York is that you can never get a cab,

except when you don’t need a cab, and then there are cabs

everywhere” (quote and example from S.DeDeo’s Maximum
Entropy Methods tutorial [4]).

At various moments, we head out to the street to hail a cab, and we

keep track of how long it took before a cab was available. Perhaps the

observations (in minutes) look like this

6, 3, 4, 6, 2, 3, 2, 6, 4, 4.

What can you conclude about the waiting time for a New York cab?

Solution: in the best case scenario a cab is waiting for us as we get to

the curb (𝑗 = 0), while in the worst case scenario (a zombie apocalypse,

say?), no cab ever comes (𝑗 → ∞). But can anything else be said?

To use MaxEnt in this situation, we need to find – among all of the trial

distributions that could have generated the observed waiting times – the

one with the highest entropy. Unfortunately, there are infinitely many

such distributions.

We can narrow the search, however, by including a constraint stating that

the expected value of the trial distributions should be the same as the

mean of the sample: in this case, 4.

1622 25 Bayesian Data Analysis

The two constraints translate to

𝑔1(p) =
∞∑
𝑗=0

𝑗 · 𝑝 𝑗 − 4 = 0 and 𝑔2(p) =
∞∑
𝑗=0

𝑝 𝑗 − 1 = 0,

where 𝑝 𝑗 is the probability of having to wait 𝑗 minutes for a cab.

The method of Lagrange multipliers reduces the problem to solving

argp max {𝐻(p) − 𝜆1𝑔1(p) − 𝜆2𝑔2(p)} .

This requires solving the gradient equation

∇p𝐻(p) = 𝜆1∇p𝑔1(p) + 𝜆2∇p𝑔2(p),

which gives rise to equations of the form

−(ln 𝑝 𝑗 + 1) = 𝜆1 𝑗 + 𝜆2 , 𝑗 = 0, 1, . . . ,

or simply 𝑝 𝑗 = exp(−𝜆1 𝑗) exp(−1 − 𝜆2) for 𝑗 = 0, 1,

Since

1 =

∞∑
𝑗=0

𝑝 𝑗 = exp(−1 − 𝜆2)
∞∑
𝑗=0

exp(−𝜆1 𝑗),

we have

exp(1 + 𝜆2) =
∞∑
𝑗=0

exp(−𝜆1 𝑗) =
1

1 − exp(−𝜆1)
,

assuming that | exp(−𝜆1)| < 1.

Similarly,

4 =

∞∑
𝑗=0

𝑗𝑝 𝑗 = exp(−1 − 𝜆2)
∞∑
𝑗=0

𝑗 exp(−𝜆1 𝑗),

so that

4 exp(1 + 𝜆2) =
∞∑
𝑗=0

𝑗 exp(−𝜆1 𝑗) =
exp(−𝜆1)

(1 − exp(−𝜆1))2
.

Substituting the first of these into the latter, and solving for 𝜆1, we see

that 𝜆1 = ln(5/4). Substituting that result back into the first equation, we

further obtain exp(−1 − 𝜆2) = 1

5
, so that

𝑝 𝑗 = exp(−1 − 𝜆2) exp(−𝜆1 𝑗) =
1

5

(
4

5

) 𝑗
, 𝑗 = 0, . . .

It is easy to see that this defines a distribution; a “verification” is provided

by the following code.

pmf_maxent <- function(x,lambda=4/5) (1-lambda)*(lambda)^x

sum(pmf_maxent(0:100)) # check if it’s a distribution

mp <- barplot(pmf_maxent(0:15), ylim=c(0,.25),

xlab="waiting minutes")

axis(1,at=mp,labels=paste(0:15))

25.4 Posterior Distributions 1623

This distribution could be used as a prior in a Bayesian analysis of the

situation. Notice that some information about the data (in this case, only

the sample mean) is used to define the MaxEnt prior.

Crucially, however, the data that is used to build the MaxEnt prior cannot
be re-used as part of the likelihood computations. The situation is not

unlike that of the training/testing paradigm of machine learning.

25.4 Posterior Distributions

The posterior distribution is used to estimate a variety of model parame-
ters of interest, such as the mean, the median, the mode, etc.

It is possible to construct credible intervals/regions directly from the pos-

terior (in contrast to the “confidence” intervals of frequentist inference).

Given a posterior distribution on a parameter 𝜃 ∈ ℝ, a 1 − 𝛼 credible
interval C.I. [𝐿,𝑈] is an interval such that

𝑃(𝐿 ≤ 𝜃 ≤ 𝑈 | 𝐷; 𝐼) ≥ 1 − 𝛼.

A similarly construction can be used for a joint credible region 𝜽 ∈ ℝ𝑛 .

Because the posterior is a full distribution on the parameters, it is possible

to make all sorts of probabilistic statements about their values, such as:

“I am 95% sure that the true parameter value is bigger than 0.5”;

“There is a 50% chance that 𝜃1 is larger than 𝜃2”;

etc.

1624 25 Bayesian Data Analysis

25.4.1 High-Density Intervals

We can build the credible interval of 𝜃-values using the highest density
interval (HDI), i.e., We define a region 𝐶𝑘 in parameter space with

𝐶𝑘 = {𝜃 : 𝑃(𝜃 | 𝐷; 𝐼) ≥ 𝑘} ,

where 𝑘 is the largest number such that∫
𝐶𝑘

𝑃(𝜃 | 𝐷; 𝐼) 𝑑𝜃 = 1 − 𝛼.

This typically has the effect of finding the smallest region 𝐶𝑘 (in measure)

region meeting the criterion.
21

21: The value 𝑘 can be thought of the

height of a horizontal line (or hyperplane,

in the case of multivariate posteriors) over-

laid on the posterior, whose intersection(s)

with the latter define a region over which

the integral of the posterior is 1 − 𝛼. In

most cases, it must be found numerically.

Example: it is an election year and we are interested in knowing whether

the general population prefers candidate 𝐴 or candidate 𝐵. A recently

published poll states that of 400 randomly sampled voters, 232 preferred

candidate 𝐴, while the remainder preferred candidate 𝐵.

1. Suppose that we had no particular belief about the preference

before the poll was published.
22

What is the 95% HDI on this22: A non-informative uniform prior on

the preference, which is to say, a Beta dis-

tribution with both parameters equal to 1.

belief after learning of the poll result?

Solution: let preference for candidate 𝐴 be denoted by 1, and

preference for candidate 𝐵 by 0. We can think of each voter’s

preference as arising from an independent Bernoulli trial.
23

23: Assuming that the polled voters are

selected randomly.

post = BernBeta(c(1,1), c(rep(1,232), rep(0,168)))

We see that the posterior distribution’s 95% HDI ranges from 0.531

to 0.628, in favour of candidate 𝐴.

25.4 Posterior Distributions 1625

2. Based on the poll, is it credible to believe that the population is

equally divided in its preferences among candidates?

Solution: the 95% HDI from the previous part shows that 𝜃 = 0.5

is not among the credible values, hence it is not credible to believe

that the population is equally divided in its preferences (at the

95%) level.

3. Say we conduct a follow-up poll to narrow our estimate of the

population’s preference. We randomly sample 100 people and find

that 57 prefer candidate𝐴. Assuming that the opinion of people has

not changed between polls, what is the 95% HDI on the posterior?

Solution: using the previous posterior as a new prior, we obtain

the following results.

post = BernBeta(post, c(rep(1,57), rep(0,43)))

[1] 290 212

The 95% HDI for the preference still leans towards candidate 𝐴,

but is a bit narrower, ranging from 0.534 to 0.621.

4. Based on the follow-up poll, is it credible to believe that the popu-

lation is equally divided in its preferences among candidates?

Solution: the 95% HDI from the previous results excludes 𝜃 = 0.5;

both the follow-up poll and the original poll suggest that the popu-

lation is not equally divided (and actually prefers candidate 𝐴).

1626 25 Bayesian Data Analysis

25.4.2 MCMC Methods

The true power of Bayesian inference is most keenly felt when the model

specifications lead to a posteriors that cannot be manipulated analytically;

in that case, it is usually possible to recreate a synthetic (or simulated) set

of values that share the properties with a given posterior. Such processes

are known as Monte Carlo simulations.

A Markov chain is an ordered, indexed set of random variables (a

stochastic process) in which the values of the quantities at a given state

depends probabilistically only on the values of the quantities at the

preceding state.

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms

for sampling from a probability distribution based on the construction of a

Markov chain with the desired distribution as its equilibrium distribution.

The state of the chain after a number of steps is then used as a sample of

the desired distribution.
24

MCMC techniques are often applied to solve24: The quality of the sample improves as

a function of the number of steps.
integration and optimization problems in large-dimensional spaces.

These two types of problem play a fundamental role in machine learning,

physics, statistics, econometrics and decision analysis. For instance,

given variables 𝜽 ∈ 𝚯 and data 𝐷, the following (typically intractable)

integration problems are central to Bayesian inference:

normalization – in order to obtain the posterior 𝑃(𝜽 | 𝐷; 𝐼) given

the prior 𝑃(𝜽 | 𝐼) and likelihood 𝑃(𝐷 | 𝜽; 𝐼), the normalizing

(denominator) factor in Bayes’ theorem needs to be computed

𝑃(𝜽 | 𝐷; 𝐼) = 𝑃(𝜽 | 𝐼)𝑃(𝐷 | 𝜽; 𝐼)∫
𝚯
𝑃(𝐷 | 𝜽; 𝐼)𝑃(𝜽 | 𝐼)𝑑𝜽

;

marginalization – given the joint posterior of (𝜽, 𝑥), we may often

be interested in the marginal posterior

𝑃(𝜽 | 𝐷; 𝐼) =
∫

𝑃(𝜽, 𝑥 | 𝐷; 𝐼)𝑑𝑥;

expectation – the final objective of the analysis is often to obtain

summary statistics of the form

𝐸(𝑓 (𝜽)) =
∫
𝚯
𝑓 (𝜽)𝑃(𝜽 | 𝐷; 𝐼)𝑑𝜽

for some function of interest (i.e., 𝑓 (𝜽) = 𝜽 or 𝑓 (𝜽) = (𝜽 − 𝐸(𝜽))2,

which represent the mean and the variance, respectively).

25.4.3 The MH Algorithm

The Metropolis-Hastings (MH) algorithm is a specific type of Monte Carlo

process; it is likely among the ten algorithms that have had the greatest

influence on the development and practice of science and engineering in

recent years.
25

25: The celebrated Gibbs sampler can be

viewed as a special case of MH.

MH generates a random walk (that is, it generates a succession of

posterior samples) in such a way that each step in the walk is completely

25.4 Posterior Distributions 1627

independent of the preceding steps; the decision to reject or accept the

proposed step is also independent of the walk’s history.

Any process for which the current step is independent (forgetful) of the

previous states, namely

𝑃(𝑋𝑛+1 = 𝑥 | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 ; 𝐼) = 𝑃(𝑋𝑛+1 = 𝑥 | 𝑋𝑛 = 𝑥𝑛 ; 𝐼)

for all 𝑛, 𝑋𝑗 and 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑛, is called a (first order) Markov process,

and a succession of such steps is a (first order) Markov chain.

MH uses a candidate or proposal distribution for the posterior, say

𝑞(·, 𝜽), where 𝜽 is a vector of parameters that is fixed by the user-called

tuning parameters; MH then constructs a Markov Chain by proposing a

value for 𝜽 from this candidate distribution, and then either accepting or

rejecting this value (with a certain probability).

Theoretically the proposal distributions can be nearly any distribution,

but in practice it is recommended to keep to simple ones: a normal if the

parameter of interest can be any real number (e.g., 𝜇), or a log-normal if

it has positive support (e.g., 𝜎2
), say.

The MH algorithm simulates samples from a probability distribution by

making use of the full joint density function and (independent) proposal

distributions for each of the variables of interest.

The first step is to initialize the sample value for each random variable

(often obtained by sampling from the variable’s prior distribution). The

main loop of the algorithm consists of three components:

1. generate a candidate sample 𝑥∗ from the proposal distribution

𝑞(𝑥(𝑖) |𝑥(𝑖−1));
2. compute the acceptance probability via the acceptance function

𝛼(𝑥∗ |𝑥(𝑖−1)) based on the proposal distribution and the full joint

density 𝜋(·);
3. accept the candidate sample with probability 𝛼, the acceptance

probability, or reject it otherwise.

1628 25 Bayesian Data Analysis

Example (modified from [10, 6]): we use the MH algorithm to “learn”

linear model parameters from a dataset. The test data for this example is

generated as follows.

First, we establish the true model parameters.

set.seed(0) # for replicability

t.A <- 10 # true slope

t.B <- 0 # true intercept

t.sd <- 20 # true noise

s.Size <- 50 # sample size

We will use equally spaced 𝑥 values:

x <- (-(s.Size-1)/2):((s.Size-1)/2)

The corresponding 𝑦 values are such that 𝑦 ∼ N(𝑎𝑥 + 𝑏, 𝜎2):

y <- t.A * x + t.B + rnorm(n=s.Size,mean=0,sd=t.sd)

The 𝑥 values are balanced around zero in order to “de-correlate” the

slope and the intercept.

plot(x,y, main="Test Data")

Defining the statistical model. The next step is to specify the statistical

model. We already know that the data was created with a linear rela-

tionship 𝑦 = 𝑎𝑥 + 𝑏 together with a normal error model N(0, 𝜎2), so we

might as well use the same model for the fit and see if we can retrieve our

original parameter values. Note however that, in general, the generating

model is unknown.

Deriving the likelihood function from the model. A linear model of

the form 𝑦 = 𝑎𝑥 + 𝑏 +N(0, 𝜎2) takes the parameters (𝑎, 𝑏, 𝜎) as inputs.

The output should be the probability of obtaining the test data under

25.4 Posterior Distributions 1629

this model: in this case, we only need to calculate the difference between

the predictions 𝑦 = 𝑎𝑥 + 𝑏 and the observed 𝑦, and then look up the

probability (using dnorm) for such deviations to occur.

likehd <- function(param){

a = param[1]

b = param[2]

sd = param[3]

pred = a*x + b

singlelikelihoods = dnorm(y, mean=pred, sd=sd, log=T)

sumll = sum(singlelikelihoods)

return(sumll)

}

For instance, we can find and plot the likelihood profile of the slope:

s.values <- function(x){return(likehd(c(x, t.B, t.sd)))}

s.likehds <- lapply(seq(1/2*t.A, 3/2*t.A, by=.05), s.values)

plot (seq(1/2*t.A, 3/2*t.A, by=.05), s.likehds , type="l",

xlab = "values of slope parameter a", ylab = "Log likelihood")

Defining the priors. In Bayesian analysis, the next step is always required:

we have to specify a prior distribution for each of the model parameters.

To keep things simple, we will use a uniform distribution for the slope,

and normal distributions for the noise and the intercept.
26

26: We will work with the logarithms of

all quantities, so that the likelihood is a

sum and not a product as would usually

be the case.prior <- function(param){

a = param[1]

b = param[2]

sd = param[3]

aprior = dunif(a, min=0, max=2*t.A, log = T)

bprior = dnorm(b, mean=t.B, sd = 5, log = T)

sdprior = dunif(sd, min=0, max=2*t.sd, log = T)

return(aprior+bprior+sdprior)

}

1630 25 Bayesian Data Analysis

The posterior. The product of prior by likelihood is the actual quantity

that MCMC works with (it is not, strictly speaking, the posterior as it is

not normalized).

posterior <- function(param){

return (likehd(param) + prior(param))

}

Applying the MH algorithm. One of the most frequent applications

of MH (as in this example) is sampling from the posterior density in

Bayesian statistics.
27

27: The algorithm may be used to sample

from any integrable function.

The aim of the algorithm is to jump around in parameter space, but in such

a way as to have the probability to land at a point be proportional to the

function we sample from (this is usually called the target function). In this

case, the target function is the posterior that was defined previously.

This is achieved by

1. starting with a random parameter vector;

2. choosing a new parameter vector near the old value based on some

probability density (the proposal function), and

3. jumping to this new point with a probability

𝛼 = min{1, 𝑔(new)/𝑔(old)},

where 𝑔 is the target.

The distribution of the parameter vectors MH visits converges to the

target distribution 𝑔.

proposalfunction <- function(param){

return(rnorm(3,mean = param, sd= c(0.1,0.5,0.3)))

}

run_metropolis_MCMC <- function(startvalue, iterations){

chain = array(dim = c(iterations+1,3))

chain[1,] = startvalue

for (i in 1:iterations){

proposal = proposalfunction(chain[i,])

probab = exp(posterior(proposal) - posterior(chain[i,]))

if (runif(1) < probab){

chain[i+1,] = proposal

}

else{

chain[i+1,] = chain[i,]

}

}

return(chain)

}

startvalue = c(4,1,10) # random choice

chain = run_metropolis_MCMC(startvalue, 10000)

25.4 Posterior Distributions 1631

The first steps of the algorithm may be biased by the initialization

process; they are usually discarded for the analysis (this is referred to as

the burn-in time).

burnIn = 5000

acceptance = 1-mean(duplicated(chain[-(1:burnIn),]))

The acceptance rate is an interesting output to study: how often was a

proposal rejected by the MH acceptance criterion? The acceptance rate

can be influenced by the proposal function: generally, the nearer the

proposal is to the latest value, the larger the acceptance rate.
28

28: Very high acceptance rates, however,

are usually not beneficial, as this implies

that the algorithms is “staying” in the

same neighbourhood, which results in

sub-optimal probing of the parameter
space (there is very little mixing). Accep-

tance rates between 20% and 30% are con-

sidered optimal for typical applications

[7].

We plot the results below (the true parameter values are shown in red).

par(mfrow = c(2,3))

hist(chain[-(1:burnIn),1],nclass=30, main="Posterior of a")

abline(v = mean(chain[-(1:burnIn),1]))

abline(v = t.A, col="red")

hist(chain[-(1:burnIn),2],nclass=30, main="Posterior of b")

abline(v = mean(chain[-(1:burnIn),2]))

abline(v = t.B, col="red")

hist(chain[-(1:burnIn),3],nclass=30, main="Posterior of sd")

abline(v = mean(chain[-(1:burnIn),3]))

abline(v = t.sd, col="red")

plot(chain[-(1:burnIn),1], type = "l", main = "Chain values of a")

abline(h = t.A, col="red")

plot(chain[-(1:burnIn),2], type = "l", main = "Chain values of b")

abline(h = t.B, col="red")

plot(chain[-(1:burnIn),3], type = "l", main = "Chain values of sd")

abline(h = t.sd, col="red")

1632 25 Bayesian Data Analysis

The upper row shows posterior estimates for the slope 𝑎, intercept 𝑏, and

standard deviation of the error 𝜎; the lower row shows the Markov Chain

of parameter values. We retrieve (more or less) the original parameters

that were used to create the data, and there is a certain area around the

highest posterior values that also show some support by the data, which

is the Bayesian equivalent of confidence intervals.

These posterior distributions are marginal distributions; the pairwise

joint distributions are shown below (again, with true parameter values

in red – the horizontal and vertical lines).

plot(chain[-(1:burnIn),1:2], main="Scatter plot of a and b",

xlab="Estimates for a", ylab="Estimates for b")

abline(v = t.A, col="red")

abline(h = t.B, col="red")

plot(chain[-(1:burnIn),2:3], main="Scatter plot of b and sd",

xlab="Estimates for b", ylab="Estimates for sd")

abline(v = t.B, col="red")

abline(h = t.sd, col="red")

plot(chain[-(1:burnIn),c(1,3)], main="Scatter plot of a and sd",

xlab="Estimates for a", ylab="Estimates for sd")

abline(v = t.A, col="red")

abline(h = t.sd, col="red")

The posterior distributions certainly do seem to contain the true parameter

values. By way of comparison, a simple linear regression analysis would

yield the following estimates:

summary(lm(y~x))

Residuals:

Min 1Q Median 3Q Max

-33.067 -12.201 -3.733 14.562 46.192

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4786 2.6115 0.183 0.855

x 9.9082 0.1810 54.751 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 18.47 on 48 degrees of freedom

Multiple R-squared: 0.9842, Adjusted R-squared: 0.9839

F-statistic: 2998 on 1 and 48 DF, p-value: < 2.2e-16

Which method is best, in this context? What are the advantages and

disadvantages of each?

25.5 Additional Topics 1633

25.5 Additional Topics

According to [5],

the central feature of Bayesian inference is the direct quantifi-

cation of uncertainty.

Bayesian approach to modeling uncertainty is particularly useful when:

the available data is limited;

there is some concern about overfitting;

some facts are more likely to be true than others, but that informa-

tion is not contained in the data, or

the precise likelihood of certain facts is more important than solely

determining which fact is most likely (or least likely).

As discussed previously, Bayesian methods have a number of powerful

features. They allow analysts to:

incorporate specific knowledge about parameters of interest;

logically update knowledge about the parameter after observing

sample data;

make formal probability statements about parameters of interest;

specify model assumptions and check model quality and sensitivity

to these assumptions in a straightforward manner, and

provide probability distributions rather than point estimates.

25.5.1 Uncertainty

The following example represents a Bayesian approach to dealing with

the uncertainty of the so-called envelope paradox.

Example: you are given two indistinguishable envelopes, each containing

a cheque, one being twice as much as the other. You may pick one

envelope and keep the money it contains. Having chosen an envelope at

will, but before inspecting it, you are given the chance to switch envelopes.

Should you switch? What is the expected outcome in doing so? Explain

how this game leads to infinite cycling.

Solution: let 𝑉 be the (unknown) value found in the envelope after the

first selection. The other envelope then contains either
1

2
𝑉 or 2𝑉 , both

with probability 0.5, and the expected value of trading is

𝐸[trade] = 0.5 × 1

2

𝑉 + 0.5 × 2𝑉 =
5

4

𝑉 > 𝑉 ;

and so it appears that trading is advantageous.

Let the (still unknown) value of the cheque in the new envelope be𝑊 . The

same argument shows that the expected value of trading that envelope is

5

4
𝑊 >𝑊 , so it would make sense to trade the envelope once more, and

yet once more, and so on, leading to infinite cycling.

There is a Bayesian approach to the problem, however. Let 𝑉 be the

(uncertain) value in the original selection, and𝑊 be the (also uncertain)

value in the second envelope. A proper resolution requires a joint (prior)

distribution for 𝑉 and𝑊 . Now, in the absence of any other information,

1634 25 Bayesian Data Analysis

the most we can say about this distribution using the maximum entropy

principle is that 𝑃(𝑉 <𝑊) = 𝑃(𝑉 >𝑊) = 0.5.

By definition, if𝑉 <𝑊 , then𝑊 = 2𝑉 ; if, on the other hand,𝑉 >𝑊 then

𝑊 = 𝑉
2

. We now show that the expected value in both envelopes is the

same, and thus that trading envelope is no better strategy than keeping

the original selection. Using Bayes’ Theorem, we compute that

𝐸[𝑊] = 𝐸[𝑊 |𝑉 <𝑊]𝑃(𝑉 <𝑊) + 𝐸[𝑊 |𝑉 >𝑊]𝑃(𝑉 >𝑊)
= 𝐸[2𝑉 |𝑉 <𝑊] · 0.5 + 𝐸[0.5𝑉 |𝑉 >𝑊] · 0.5

= 𝐸[𝑉 |𝑉 <𝑊] + 0.25 · 𝐸[𝑉 |𝑉 >𝑊],

while

𝐸[𝑉] = 𝐸[𝑉 |𝑉 <𝑊]𝑃(𝑉 <𝑊) + 𝐸[𝑉 |𝑉 >𝑊]𝑃(𝑉 >𝑊)
= 0.5 · 𝐸[𝑉 |𝑉 <𝑊] + 0.5 · 𝐸[𝑉 |𝑉 >𝑊].

Before we can proceed any further, we must have some information

about the joint distribution 𝑃(𝑉,𝑊) (note, however, that 𝐸[𝑊] will not

typically be equal to
5

4
𝑉 , as had been assumed at the start of the solution).

The domain Ω of the joint probability consists of those pairs (𝑉,𝑊)
satisfying 𝑉 = 2𝑊 (𝑉 > 𝑊) or 𝑊 = 2𝑉 (𝑉 < 𝑊) for 0 < 𝑉,𝑊 < 𝑀,

where 𝑀 < ∞ is some upper limit on the value of each cheque.
29

29: In the worst case scenario, 𝑀 would

have to be smaller than the total amount of

wealth available to humanity throughout

history, although in practice 𝑀 should be

substantially smaller. Obviously, a differ-

ent argument will need to be made in the

case 𝑀 = ∞.

We have assumed that the probability weight on each branch of Ω is 1/2;

if we further assume, say, that the cheque value is as likely to be any of

the allowable values on these branches, then the joint distribution is

𝑃(𝑉,𝑊) =

1

𝑀 if 𝑉 <𝑊
1

2𝑀 if 𝑉 >𝑊

0 otherwise

and the expectations listed above are

𝐸[𝑉 |𝑉 <𝑊] =
∫
𝑉<𝑊
𝑉 · 𝑃(𝑉,𝑊) 𝑑Ω =

∫ 𝑀/2

0

𝑉 · 1

𝑀
𝑑𝑉 =

𝑀

8

and

𝐸[𝑉 |𝑉 >𝑊] =
∫
𝑉>𝑊
𝑉 · 𝑃(𝑉,𝑊) 𝑑Ω =

∫ 𝑀

0

𝑉 · 1

2𝑀
𝑑𝑉 =

𝑀

4

.

25.5 Additional Topics 1635

Therefore,

𝐸[𝑊] = 𝑀

8

+ 0.25 · 𝑀
4

=
3𝑀

16

and

𝐸[𝑉] = 0.5 · 𝑀
8

+ 0.5 · 𝑀
4

=
3𝑀

16

,

and switching the envelope does not change the expected value of the

outcome. There is no paradox; no infinite cycling.

Example: After the sudden death of her two baby sons, Sally Clark

was sentenced by a U.K. court to life in prison in 1996. Among other

errors, expert witness Sir Roy Meadow had wrongly interpreted the

small probability of two cot deaths as a small probability of Clark’s

innocence. After a long campaign, which included the refutation of

Meadow’s statistics using Bayesian statistics, Clark was released in 2003.

While Clark’s innocence could not be proven beyond the shadow of a

doubt using such methods, her culpability could also not be established

beyond reasonable doubt and she was cleared.
30

30: An informative write-up of the situa-

tion can be found online [2].

25.5.2 Bayesian A/B Testing

𝐴/𝐵 testing is an excellent tool for deciding whether or not to roll out

incremental features. To perform an 𝐴/𝐵 test, we divide users randomly

into a test group and into a control group, then provide the new feature

to the test group while letting the control group continue to experience

the current version of the product.

If the randomization procedure is appropriate, we may be able to attribute

any difference in outcomes between the two groups to the changes we

are rolling out without having to account for other sources of variation

affecting the user behaviour. Before acting on these results, however, it is

important to understand the likelihood that any observed differences is

merely due to chance rather than to product modification.

For example, it is perfectly possible to obtain different𝐻/𝑇 ratios between

two fair coins if we only conduct a limited number of tosses; In the same

manner, it is possible to observe a change between the 𝐴 and 𝐵 groups

even if the underlying user behavior is identical.

Example: (modified from [13]) Wakefield Tiles is a company that sells floor

tiles by mail order. They are trying to become an active player into the

lucrative Chelsea market by offering a new type of tile to the region’s

contractors.

The marketing department have conducted a pilot study and tried two

different marketing methods:

𝐴 – sending a colourful brochure in the mail to invite contractors

to visit the company’s showroom;

𝐵 – sending a colourful brochure in the mail to invite contractors to

visit the company’s showroom, while including free tile samples.

The marketing department sent out 16 mail packages of type 𝐴 and 16

mail packages of type 𝐵. Four Chelseaites that received a package of type

𝐴 visited the showroom, while 8 of those receiving a package of type 𝐵

did the same.

1636 25 Bayesian Data Analysis

The company is aware that:

a mailing of type 𝐴 costs 30$ (printing cost and postage);

a mailing of type 𝐵 costs 300$ (also includes the cost of the free tile

samples);

a visit to the showroom yields, on average, 1000$ in revenue during

the next year.

Which of the methods (𝐴 or 𝐵) is most advantageous to Wakefield Tiles?

Solution: the Bayesian solution requires the construction of a prior

distribution and of a generative model; as part of the generative model,

we will need to produce 𝑛 replicates of samples from the binomial

distribution.
31

31: Which can be achieved in R using

rbinom(n,size,prob).

The binomial distribution simulates n times the number of “successes”

when performing size trials (mailings), where the probability of a “suc-

cess” is prob. A commonly used prior for prob is the uniform distribution

𝑈(0, 1), from which we sample in R via runif(1, min = 0, max = 1).

We start by setting a seed for replicability, and set the number of replicates

(trials).

set.seed(1111) # for replicability

n.draws <- 200000

Next, we generate a probability of success for mailings 𝐴 and 𝐵, for each

of the replicates.

prior <- data.frame(p.A = runif(n.draws, 0, 1),

p.B = runif(n.draws, 0, 1))

The generative model tells us how many visitors to expect for mailing

types 𝐴, 𝐵, for each replicate.

generative.model <- function(p.A, p.B) {

visitors.A <- rbinom(1, 16, p.A)

visitors.B <- rbinom(1, 16, p.B)

c(visitors.A = visitors.A, visitors.B = visitors.B)

}

We then simulate data using the parameters from the prior and the

generative model. This yields the actual number of visitors for each

replicate.

sim.data <- as.data.frame(t(sapply(1:n.draws, function(i) {

generative.model(prior$p.A[i], prior$p.B[i])})))

Only those prior probabilities for which the generative model match the

observed data are retained.

25.5 Additional Topics 1637

posterior <- prior[sim.data$visitors.A == 4 &

sim.data$visitors.B == 8,]

In this case, there are enough trials to ensure that the posterior is non-

empty; what could be done if that was not the case?

Finally, we visualize the posteriors:

par(mfrow = c(1,3))

hist(posterior$p.A, main = "Posterior -- mailing A",

xlab="p.A")

hist(posterior$p.B, main = "Posterior -- mailing B",

xlab="p.B")

plot(posterior,main = "Success for mailing types A and B",

xlab="p.A", ylab="p.B")

The posterior distributions for the probability of success for each mailing

types are produced as below (see next page for display).

par(mfrow = c(1,2))

avg.profit.A <- -30 + posterior$p.A * 1000

avg.profit.B <- -300 + posterior$p.B * 1000

hist(avg.profit.A, main = "Average Profit -- mailing A",

xlab="profit.A")

hist(avg.profit.B, main = "Average Profit -- mailing B",

xlab="profit.B")

In order to estimate the average profit for each mailing type, we use the

posterior distributions for the probability of success (see next page).

hist(avg.profit.A - avg.profit.B, main="Posterior --

profit A - profit B")

(expected.avg.profit.diff <- mean(avg.profit.A - avg.profit.B))

abline(v = expected.avg.profit.diff , col = "red", lwd =2)

1638 25 Bayesian Data Analysis

[1] 59.13869

The expected profit for mailing type 𝐴 is about 60$ higher than for

mailing type 𝐵 (numbers may vary, depending on the seed). Keeping it

simple seems to be a better idea in this context.

25.6 Exercises 1639

25.6 Exercises

1. In many situations, researchers observe that a certain region of the brain is active and infer that a

particular cognitive function is therefore being carried out; [12] cautioned that such inferences are not

necessarily firm and need to be made with Bayes’ rule in mind. The same paper reports the following

frequency table of previous studies that involved any language-related task (specifically phonological

and semantic processing) and whether or not a particular region of interest (ROI) in the brain was

activated (see table below). Suppose that a new study is conducted and finds that the ROI is activated

(𝐴). If the prior probability that the task involves language processing is 𝑃(𝐿) = 0.5, what is the posterior

probability, 𝑃(𝐿 | 𝐴), given that the ROI is activated?

Language (𝐿) Other (𝐿)
Activated (𝐴) 166 199

Not Activated (𝐴) 703 2154

2. Suppose that, in 1975, 52% of UK voters supported the Labour Party and 48% the Conservative Party.

Suppose further that 55% of Labour voters wanted the UK to remain part of the EEC and 85% of

Conservative voters were also in favour. What is the probability that a person voting “Yes” (in favour of

remaining in the EEC) in the 1975 referendum is a Labour voter? [8]

3. Given the following statistics, what is the probability that a woman over 50 years of age has breast cancer

if she receives a positive mammogram result? [Bayes’ Theorem Problems, Definition and Examples]

a) 1% of women over 50 have breast cancer;

b) 90% of women over 50 who have breast cancer test positive on mammograms.

c) 8% of women over 50 will obtain a false positive result on a breast cancer test.

4. What would it take for you to update ...

a) your belief in the existence/non-existence of a deity?

b) your belief in the shape of the Earth?

c) your political affiliation?

d) your allegiance to a sport team? (Go Sens!)

e) your belief in the effectiveness of homeopathic remedies?

f) your belief in the effectiveness of Bayesian analysis?

5. Suppose that a test for a particular disease has a very high success rate. When a patient has the disease,

the test accurately reports a ‘positive’ with probability 0.99; when they do not, the test accurately

reports a ‘negative’ with probability 0.95. Assume further that only 0.1% of the population has the

disease. What is the probability that a patient who tests positive does not in fact have the disease?

6. A road safety analyst has access to a dataset of fatal vehicle collisions (such as Canada’s National
Collision Database) on roads in a specific region. The dataset is built using police reports, and it contains

relevant collision information such as: the severity of the collision, the age of the drivers, the number

of passengers in each vehicle, the date and time of the collision, weather and road conditions, blood

alcohol content (BAC), etc. Let us further assume that the analyst has access to aggregated weather data

and R.I.D.E. (sobriety checkpoint) reports for that region. Some information may be missing from the

police reports at a given moment (perhaps the coroner has not yet had the chance to determine the BAC

level, or some of the data may have been mistakenly erased and/or corrupted). For some collisions, we

may need to answer either or both of the following questions: did alcohol play a role in the collision?

did “bad” weather play a role in the collision? As usual, let 𝐼 denote all relevant information relating to

the situation, such as the snowy months of the year, the incidence of impaired driving in that region,

etc. The analyst will consider 3 propositions:

a) 𝐴: a fatal collision has occurred

b) 𝐵: the weather and road conditions were bad

c) 𝐶: the BAC level of one of the drivers involved in a collision was above 0.08% per volume

http://www.statisticshowto.com/bayes-theorem-problems/

1640 25 Bayesian Data Analysis

The analysts may have an interest in 𝑃(𝐵 | 𝐴; 𝐼), 𝑃(𝐶 | 𝐴; 𝐼), 𝑃(𝐵, 𝐶 | 𝐴; 𝐼), 𝑃(𝐵,−𝐶 | 𝐴; 𝐼), or

𝑃(−𝐵, 𝐶 | 𝐴; 𝐼). Derive an expression to compute the probability that “bad” weather and road

conditions were present at the time of the collision.

7. A Mild Winter scenario (we use the set-up of question 6): during a mild winter, “bad” weather affected

regional road conditions 5% of the time. The analyst knows from other sources that the probabilities of

fatal collisions given “bad” and “good” weather conditions in the region over the winter are 0.01% and

0.002%, respectively. If a fatal collision occurred on a regional road that winter, what is the probability

that the weather conditions were “bad” on that road at that time? Is the result surprising?

8. Not Quite as Mild a Winter scenario (we use the set-up of questions 6 and 7): assume that the winter

was not quite as mild (perhaps “bad” weather affected regional road conditions 10% of the time, say).

If a fatal collision occurred on a regional road that winter, what is the probability that the weather

conditions were “bad” on that road at that time? How much of a jump are you expecting compared to

question 7?

9. Use the set-up of questions 6-8. Just how rough of a winter would be necessary before we conclude

that a given fatal collision was more likely to have occurred in “bad” weather?

10. Use the set-up of questions 6-9. In what follows, we assume that the analyst does not have access to

other sources from which to derive the individual probabilities of fatal collisions given “bad” and

“good” weather conditions in the region. Instead, the analyst has access to data that suggests that the

probability of a fatal collision in “bad” weather is 𝑘 times as high as the probability of a fatal collision

in “good” weather. Let the probability of “bad” weather be 𝑤 ∈ (0, 1). Derive an expression for the

probability that the weather conditions were “bad” on that road at that time, given that a fatal collision

occurred, in terms of 𝑘 and 𝑤.

11. Really Rough Winter scenario (see questions 6-10): during a really rough winter, “bad” weather affected

road conditions with probability 𝑤 = 0.2. Determine the probabilities that there were “bad” weather

conditions given a fatal collision under 4 different values: 𝑘 = 0.1, 1, 10, 100. Which of these scenarios

is most likely?

12. Use the set-up of questions 6-11. In the next scenario, we assume that the traffic flow changes depending

on the weather; while some individuals need to be on the roads no matter the conditions, others might

tend to avoid the roads when the conditions are “bad”. Make whatever assumptions are necessary and

analyze the situation as you have done in the previous questions.

13. Use the set-up of questions 6-12. Repeat the process for the other conditional probabilities of interest.

14. A lifetime’s supply of poutine is placed randomly behind one of three identical doors. The other two

doors lead to empty rooms. You are asked to pick a door. One of the doors you have not selected

is opened, revealing an empty room. You are given the option of changing your pick. What is your

optimal strategy?

a) Determine the ideal strategy using a simulation.

b) Analyze a similar situation (for 100 doors instead of 3) using Bayes’ Theorem.

c) Analyze the situation using Bayes’ Theorem.

15. How many heads in a row would you need to observe before you would start doubting whether a coin

is fair or not?

16. Estimate the parameters (𝜇𝑖 , 𝜎𝑖) for 𝑖 = 1, . . . , 12 in the Salary example.

17. Play with the parameters and implement new scenarios for the Money (Dollar Bill Y’All) example.

18. Play with the BernBeta() function. Do you spot anything surprising?

19. Suppose you have in your possession a coin that you know was minted by the federal government and

for which you have no reason to suspect tampering of any kind. Your prior belief about fairness of the

coin is thus strong. You flip the coin 10 times and record 9 H(eads). What is your predicted probability

of obtaining 1H on the 11th flip? Explain your answer carefully; justify your choice of prior. How would

your answer change (if at all) if you use a frequentist viewpoint?

20. A mysterious stranger hands you a different coin, this one made of some strange-to-the-touch material,

on which the words “Global Tricksters Association” You flip the coin 10 times and once again record

9H. What is your predicted probability of obtaining 1H on the 11th flip? Explain your answer carefully;

justify your choice of prior. Hint: what would be a reasonable prior for this scenario?

25.6 Exercises 1641

21. A group of adults are doing a simple learning experiment: when they see the two words “radio” and

“ocean” appear simultaneously on a computer screen, they are asked to press the F key on the keyboard;

whenever the words “radio” and “mountain” appear on the screen, they are asked to press the J key.

After several practice repetitions, two new tasks are introduced: in the first, the word “radio” appears

by itself and the participants are asked to provide the best response (F or J) based on what they learned

before; in the second, the words “ocean” and “mountain” appear simultaneously and the participants

are once again asked to provide the best response. This is repeated with 50 people. The data shows that,

for the first test, 40 participants answered with F and 10 with J; while for the second test, 15 responded

with F and 35 with J. Are people biased toward F or toward J for either of the two tests? To answer this

question, assume a uniform prior, and use a 95% HDI to decide which biases can be declared to be

credible.

22. Suppose that the marketing group of a company is testing a new web page, with the hope of increasing

the conversion rate (proportion of visitors who sign up or take some other action). The data is collected

in the file ab_data.csv , which lists user visits with whether they were sent to the new page or the

old page, and whether there was a conversion.

a) Explore and visualize the dataset.

b) We conduct Bayesian A/B testing, by defining and updating independent priors on the old and

new conversion rates, to arrive at respective posterior distributions for the old page and the

new page. Try a prior of Beta(alpha=2, beta=20) for the old rate, which represents what has

been observed in the past. Start with a subset of 100 data points and perform inference. Find the

posterior probability that the new page has a higher conversion rate. Hint: use random samples

from the independent posteriors to estimate the probability. Update the posteriors with another

100 data points. At what data size do the priors become irrelevant?

23. Sometimes we don’t just want to estimate a dependent variable, we want a probability distribution for

it. For instance, if one’s life expectancy is 80 years, we might want to know whether it’s a 50/50 spli

between 0 years and 160 years, or some other distribution.

a) Load the mimic3d.csv dataset which lists the length of stay in a hospital (LOSdays) along with

a number of other variables. Explore and visualize this dataset.

b) Construct a dataset patients.csv containing information about 10 or so (or more) “patients”, for

all but the LOSdays variable (you may use friends and family members, classmates, etc. as a basis

for your observations).

c) Predict the length of the hospital stay for the patients in the dataset by conducting a Bayesian

linear regression analysis. What’s the probability of staying longer than 2 days and therefore

definitely missing work? Use normal priors for simplicity.

https://www.data-action-lab.com/wp-content/uploads/2020/09/ab_data.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/mimic3d.csv

1642 25 Bayesian Data Analysis

Chapter References
[1] T. Bayes. ‘An essay towards solving a problem in the doctrine of chances’. In: Phil. Trans. of the Royal

Soc. of London 53 (1763), pp. 370–418.

[2] Bayesians Without Borders. Sally Clark is Wrongly Convicted of Murdering Her Children .

[3] R.T. Cox. ‘Probability, Frequency, and Reasonable Expectation’. In: American Journal of Physics 14.1

(1946).

[4] S. DeDeo. Maximum Entropy Methods Tutorial. A Simple Example: The Taxicab (video) .

[5] A. Gelman et al. Bayesian Data Analysis (3rd ed.) CRC Press, 2013.

[6] F. Hartig. ‘A simple Metropolis-Hastings MCMC in R ’. In: ().

[7] F. Hartig. ‘MCMC chain analysis and convergence diagnostics with coda in R ’. In: ().

[8] D. Hitchcock. Introduction to Bayesian Data Analysis (course notes). Department of Statistics, University of

South Carolina, 2014.

[9] E.T. Jaynes. Probability Theory: the Logic of Science. Cambridge Press, 2003.

[10] J.K. Kruschke. Doing Bayesian Data Analysis: a Tutorial with R, JAGS, and Stan (2nd ed.) Academic Press,

2011.

[11] T. Oliphant. A Bayesian perspective on estimating mean, variance, and standard-deviation from data . All

Faculty Publications, BYU. 2006.

[12] R.A. Poldrac. ‘Can cognitive processes be inferred from neuroimaging data?’ In: Trends Cogn. Sci. (2006).

[13] rasmusab. Bayesian A/B Testing for Swedish Fish Incorporated . Tutorial.

[14] N. Silver. The Signal and the Noise. Penguin, 2012.

[15] T. Stoppard. Rosencrantz and Guildenstern Are Dead. Grove Atlantic, 1966.

[16] Wikipedia. Conjugate Priors .

http://bayesian-intelligence.com/bwb/2012-03/sally-clark-is-wrongly-convicted-of-murdering-her-children/
https://www.youtube.com/watch?v=5P58wHbWXBU
https://theoreticalecology.wordpress.com/2010/09/17/metropolis-hastings-mcmc-in-r/
https://theoreticalecology.wordpress.com/2011/12/09/mcmc-chain-analysis-and-convergence-diagnostics-with-coda-in-r/
https://scholarsarchive.byu.edu/facpub/278/
http://rpubs.com/rasmusab/exercise_1_user_2015_bayes_tutorial
https://en.wikipedia.org/wiki/Conjugate_prior

Anomaly Detection and
Outlier Analysis 26

26.1 Overview 1643
Basic Notions & Concepts 1643
ML Framework 1648
Motivating Example 1655

26.2Quantitative Approaches 1658
Distance Methods 1658
Density Methods 1669

26.3 Qualitative Approaches . 1683
AVF Algorithm 1684
Greedy Algorithm 1685

26.4 High-Dimensional Data . 1686
Definitions and Challenges 1687
Projection Methods 1687
Subspace Methods 1697
Ensemble Methods 1698

26.5 Exercices 1702
Chapter References 1703

by Patrick Boily, with contributions from Youssouph Cissokho, Soufiane
Fadel, and Richard Millson

With the advent of automatic data collection, it is now possible to store

and process large troves of data. There are technical issues associated to

massive data sets, such as the speed and efficiency of analytical meth-

ods, but there are also problems related to the detection of anomalous

observations and the analysis of outliers.

Extreme and irregular values behave very differently from the majority

of observations. For instance, they can represent criminal attacks, fraud

attempts, targeted attacks, or data collection errors. As a result, anomaly

detection and outlier analysis play a crucial role in cybersecurity, quality

control, etc. [1, 24, 11]. The (potentially) heavy human price and technical

consequences related to the presence of such observations go a long way

towards explaining why the topic has attracted attention recently.

In this chapter, we review various detection methods, with particular

attention paid to both supervised and unsupervised methods.

26.1 Overview1
1: This section is an extension of Section

15.5.

Isaac Asimov, the prolific American author, once wrote that

The most exciting phrase to hear [...], the one that heralds the

most discoveries, is not “Eureka!” but “That’s funny ... ”.

However, anomalous observations are not only harbingers of great

scientific discoveries – unexpected observations can spoil analyses or

be indicative of the presence of issues related to data collection or data

processing.
2

2: Throughout, the definitions of terms

like normal and anomalous will be kept

purposely vague, to allow for increased

flexibility.

Either way, it becomes imperative for decision-makers and analysts to

establish anomaly detection protocols, and to identify strategies to deal

with such observations.

26.1.1 Basic Notions and Concepts

Outlying observations are data points which are atypical in comparison

to the unit’s remaining features (within-unit), or in comparison to the

measurements for other units (between-units), or as part of a collective

subset of observations. Outliers are thus observations which are dissimi-
lar to other cases or which contradict known dependencies or rules.

3

3: Outlying observations may be anoma-

lous along any of the individual variables,

or in combinations of variables.

1644 26 Anomaly Detection and Outlier Analysis

Observations could be anomalous in one context, but not in another.

Consider, for instance, an adult male who is 6-side tall. Such a man would

fall in the 86th percentile among Canadian males [16], which, while on

the tall side, is not unusual; in Bolivia, however, the same man would

land in the 99.9th percentile, which would mark him as extremely tall

and quite dissimilar to the rest of the population.

Anomaly detection points towards interesting questions for analysts and

subject matter experts: in this case, why is there such a large discrepancy

in the two populations?

In practice, an outlier/anomalous observation may arise as

a “bad” object/measurement: data artifacts, spelling mistakes,

poorly imputed values, etc.

a misclassified observation: according to the existing data patterns,

the observation should have been labeled differently;

an observation whose measurements are found in the distribution
tails, of a large enough number of features;

an unknown unknowns: a completely new type of observations

whose existence was heretofore unsuspected.

A common mistake that analysts make when dealing with outlying

observations is to remove them from the dataset without carefully

studying whether they are influential data points, that is, observations

whose absence leads to markedly different analysis results.

When influential observations are identified, remedial measures4
may4: Such as data transformation strategies.

need to be applied to minimize any undue effect. Note that outliers

may be influential, and influential data points may be outliers, but the

conditions are neither necessary nor sufficient.

Anomaly Detection By definition, anomalies are infrequent,5 which5: And shrouded in uncertainty due to

their relatively low numbers.
makes it difficult to distinguish them from banal noise or data collection
errors.

Furthermore, the boundary between normal and deviant observations

is usually fuzzy; with the advent of e-shops, for instance, a purchase

which is recorded at 3AM local time does not necessarily raise a red flag

anymore.

When anomalies are actually associated to malicious activities, they are

more than often disguised in order to blend in with normal observations,

which obviously complicates the detection process. Numerous methods

exist to identify anomalous observations; none of them are foolproof
and judgement must be used.

Methods that employ graphical aids (such as box-plots, scatterplots,

scatterplot matrices, and 2D tours) to identify outliers are particularly

easy to implement, but a low-dimensional setting is usually required for

ease of interpretability. These methods usually find the anomalies that

shout the loudest [6].

Analytical methods also exist (using Cooke’s or Mahalanobis’ distances,

say), but in general some additional level of analysis must be performed,

especially when trying to identify influential observations (cf. leverage).

26.1 Overview 1645

Figure 26.1: A school of fish: what jumps at you here? [author unknown]

With small datasets, anomaly detection can be conducted on a case-by-

case basis, but with large datasets, the temptation to use automated
detection/removal is strong – care must be exercised before the analyst

decides to go down that route. This stems partly from the fact that once

the “anomalous” observations have been removed from the dataset,

previously “regular” observations can become anomalous in turn in the

smaller dataset; it is not clear when that runaway train will stop.

In the early stages of anomaly detection, simple data analyses (such as

descriptive statistics, 1- and 2-way tables, and traditional visualizations)

may be performed to help identify anomalous observations, or to obtain

insights about the data, which could eventually lead to modifications of

the analysis plan.
6

6: Which, by the way, should always be

seen as a welcomed development.

How are outliers actually detected? Most methods come in one of two

flavours: supervised and unsupervised (we will discuss those in detail

in later sections).

Supervised learning (SL) methods use a historical record of labeled
(that is to say, previously identified) anomalous observations to build

a predictive classification or regression model which estimates the

probability that a unit is anomalous; domain expertise is required to tag

the data.

Since anomalies are typically infrequent, these models often also have to

accommodate the rare occurrence (or class imbalance) problem.

1646 26 Anomaly Detection and Outlier Analysis

Supervised models are built to minimize a cost function; in default

settings, it is often the case that the mis-classification cost is assumed

to be symmetrical, which can lead to technically correct but useless

solutions.

For instance, the vast majority (99.999+%) of air passengers emphatically

do not bring weapons with them on flights; a model that predicts that no

passenger is attempting to smuggle a weapon on board a flight would be

99.999+% accurate, but it would miss the point completely.

For the security agency, the cost of wrongly thinking that a passenger:

is smuggling a weapon =⇒ cost of a single search;

is NOT smuggling a weapon =⇒ catastrophe (potentially).

The wrongly targeted individuals may have a . . . somewhat different

take on this, however, either from a societal or a personal perspective.
7

7: Or both.

Unsupervised methods, on the other hand, use no previously labeled

information (anomalous/non-anomalous) or data, and try to determine

if an observation is an outlying one solely by comparing its behaviour to

that of the other observations.

As an example, if all participants in a workshop except for one can

view the video conference lectures, then the one individual/internet

connection/computer is anomalous – it behaves in a manner which is

different from the others.

It is very important to note that this DOES NOT mean that the different

behaviour is the one we are actually interested in/searching for! In Figure

26.1, perhaps we were interested in the slightly larger red fish that swims

in a different direction than the rest of the school, but perhaps we were

really interested in the regular-sized teal fish that swims in the same

direction as the others but that has orange eyes (can you spot it?).

Outlier Tests The following traditional methods and tests of outlier

detection fall into this category:
8

8: Note that normality of the data is an

assumption for some of them; how robust

these tests are against departures from this

assumption depends on the situation.

Perhaps the most commonly-used test is Tukey’s boxplot test;
for normally distributed data, regular observations typically lie

between the inner fences

𝑄1 − 1.5(𝑄3 −𝑄1) and 𝑄3 + 1.5(𝑄3 −𝑄1).

Suspected outliers lie between the inner fences and their respective

outer fences

𝑄1 − 3(𝑄3 −𝑄1) and 𝑄3 + 3(𝑄3 −𝑄1).

Points beyond the outer fences are identified as outliers (𝑄1 and

𝑄3 represent the data’s 1
st

and 3
rd

quartile, respectively; see Figure

26.2 (a concrete example is provided in Section 15.5).

The Grubbs test is another univariate test, which takes into consid-

eration the number of observations in the dataset:

𝐻0 : no outlier in the data against 𝐻1 : exactly one outlier in the data.

26.1 Overview 1647

Figure 26.2: Tukey’s boxplot test; sus-

pected outliers are marked by white disks,

outliers by black disks.

Let 𝑥𝑖 be the value of feature 𝑋 for the 𝑖th unit, 1 ≤ 𝑖 ≤ 𝑛, let

(𝑥, 𝑠𝑥) be the mean and standard deviation of feature 𝑋, let 𝛼 be

the desired significance level, and let 𝑇(𝛼
2𝑛 , 𝑛) be the critical value

of the Student 𝑡-distribution at significance
𝛼
2𝑛 . The test statistic is

𝐺 =
max{|𝑥𝑖 − 𝑥 | : 𝑖 = 1, . . . , 𝑛}

𝑠𝑥
=

|𝑥𝑖∗ − 𝑥 |
𝑠𝑥

.

Under 𝐻0, 𝐺 follows a special distribution with critical value

ℓ (𝛼; 𝑛) = 𝑛 − 1√
𝑛

√
𝑇2(𝛼

2𝑛 , 𝑛)
𝑛 − 2 + 𝑇2(𝛼

2𝑛 , 𝑛)
.

At significance level 𝛼 ∈ (0, 1), we reject the null hypothesis 𝐻0 in

favour of the alternative hypothesis that 𝑥𝑖∗ is the unique outlier
along feature if 𝐺 ≥ ℓ (𝛼; 𝑛). If we are looking for more than one

outlier, it can be tempting to classify every observation x𝑖 for which

|𝑥𝑖 − 𝑥 |
𝑠𝑥

≥ ℓ (𝛼; 𝑛)

as an outlier, but this approach is contra-indicated.

Other common tests include:

− the Mahalanobis distance, which is linked to the leverage of

an observation (a measure of influence), can also be used to

find multi-dimensional outliers, when all relationships are

linear (or nearly linear);

− the Tietjen-Moore test, which is used to find a specific number

of outliers;

− the generalized extreme studentized deviate test, if the num-

ber of outliers is unknown;

− the chi-square test, when outliers affect the goodness-of-fit,

as well as

− DBSCAN and other clustering-based outlier detection meth-

ods;

− visual outlier detection (see Section 15.5 for some simple

examples).

1648 26 Anomaly Detection and Outlier Analysis

26.1.2 Statistical Learning Framework

Fraudulent behaviour is not always easily identifiable, even after the fact.

Credit card fraudsters, for instance, will try to disguise their transactions

as regular and banal, rather than as outlandish; to fool human observers

into confusing what is merely plausible with what is probable (or at

least, not improbable).

At its most basic level, anomaly detection is a problem in applied probabil-
ity: if 𝐼 denotes what is known about the dataset (behaviour of individual

observations, behaviour of observations as a group, anomalous/normal

verdict for a number of similar observations, etc.), is

𝑃(observation is anomalous | 𝐼) > 𝑃(observation is not anomalous | 𝐼)?

Anomaly detection models usually assume stationarity for normal
observations, which is to say, that the underlying mechanism that

generates data does not change in a substantial manner over time, or, if it

does, that its rate of change (or cyclicity) is known.

A Time Series Detour For time series data, this means that it may be

necessary to first perform trend and seasonality extraction.
9

9: More information on these topics can

be obtained in Chapter 11.

Example: supply chains play a crucial role in the transportation of goods

from one part of the world to another. As the saying goes, “a given

chain is only as strong as its weakest link” – in a multi-modal context,

comparing the various transportation segments is far from an obvious

endeavour.

If shipments departing Shanghai in February 2013 took two more days,

on average, to arrive in Vancouver than those departing in July 2017, can it

be said with any certainty that the shipping process has improved in the

intervening years? Are February departures always slower to cross the

Pacific Ocean? Are either of the Feb 2013 or the July 2017 performances

anomalous?

The seasonal variability of performance is relevant to supply chain

monitoring; the ability to quantify and account for the severity of its

impact on the data is thus of great interest.

One way to tackle this problem is to produce an index to track container

transit times. This index should depict the reliability and the variability
of transit times but in such a way as to be able to allow for performance

comparison between differing time periods.

To simplify the discussion, assume that the ultimate goal is to compare

quarterly and/or monthly performance data, irrespective of the transit

season, in order to determine how well the network is performing on the

Shanghai → Port Metro Vancouver/Prince Rupert → Toronto corridor, say.

The supply chain under investigation has Shanghai as the point of origin

of shipments, with Toronto as the final destination; the containers enter

the country either through Vancouver or Prince Rupert. Containers leave

their point of origin by boat, arrive and dwell in either of the two ports

before reaching their final destination by rail.

26.1 Overview 1649

Figure 26.3: Multi-modal supply chain

corridor.

For each of the three segments (Marine Transit, Port Dwell, Rail Transit),

the data consists of the monthly empirical distribution of transit times,

built from sub-samples (assumed to be randomly selected and fully

representative) of all containers entering the appropriate segment.

Each segment’s performance is measured using fluidity indicators,
10

10: In this case, compiled at a monthly

scale.
which are computed using various statistics of the transit/dwelling time

distributions for each of the supply chain segments, such as:

Reliability Indicator (RI) the ratio of the 95
th

percentile to the 5
th

per-

centile of transit/dwelling times (a high RI indicates high volatility,

whereas a low RI (≈ 1) indicates a reliable corridor);

Buffer Index (BI) the ratio of the positive difference between the 95
th

percentile and the mean, to the mean. A small BI (≈ 0) indicates only

slight variability in the upper (longer) transit/dwelling times; a

large BI indicates that the variability of the longer transit/dwelling

times is high, and that outliers might be found in that domain;

Coefficient of Variation (CV) the ratio of the standard deviation of tran-

sit/dwelling times to the mean transit/dwelling time.

Figure 26.4: Illustration of how to derive

the various monthly fluidity indicators.

The time series of monthly indicators (which are derived from the

monthly transit/dwelling time distributions in each segment) are then

decomposed into their:

trend;

seasonal component (seasonality, trading-day, moving-holiday);

1650 26 Anomaly Detection and Outlier Analysis

Figure 26.5: Conceptual time series decom-

position; potential anomalous behaviour

should be searched for in the irregular

component.

irregular component.

The trend and the seasonal components provide the expected behaviour
of the indicator time series;ˆ[Before carrying out seasonal adjustment,

it is important to identify and pre-adjust for structural breaks (using

the Chow test, for instance), as their presence can give rise to severe

distortions in the estimation of the Trend and Seasonal effects.

Seasonal breaks occur when the usual seasonal activity level of a particu-

lar time reporting unit changes in subsequent years. Trend breaks occurs

when the trend in a data series is lowered or raised for a prolonged period,

either temporarily or permanently.
11

The irregular component arises as11: Sources of these breaks may come from

changes in government policies, strike

actions, exceptional events, inclement

weather, etc.

a consequence of supply chain volatility; a high irregular component at

a given time point indicates a poor performance against expectations for

that month, which is to say, an anomalous observation.

In general, the decomposition follows a model which is

multiplicative;

additive, or

pseudo-additive.

The choice of a model is driven by data behaviour and choice of assump-

tions; the X12 model automates some of the aspects of the decomposition,

but manual intervention and diagnostics are still required.
12

The additive12: X12 is implemented in SAS and R,

among other platforms.
model, for instance, assumes that:

1. the seasonal component 𝑆𝑡 and the irregular component 𝐼𝑡 are

independent of the trend 𝑇𝑡 ;

2. the seasonal component 𝑆𝑡 remains stable from year to year; and

3. there is no seasonal fluctuation:

∑
12

𝑗=1
𝑆𝑡+𝑗 = 0.

Mathematically, the model is expressed as:

𝑂𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐼𝑡 .

All components share the same dimensions and units. After seasonality

adjustment,the seasonality adjusted series is:

𝑆𝐴𝑡 = 𝑂𝑡 − 𝑆𝑡 = 𝑇𝑡 + 𝐼𝑡 .

The multiplicative and pseudo-additive models are defined in similar

ways (again, consult Chapter 11 for details).
13

13: The simplest way to determine

whether to use multiplicative or additive

decomposition is by graphing the time se-

ries. If the size of the seasonal variation

increases/decreases over time, multiplica-

tive decomposition should be used. On the

other hand, if the seasonal variation seems

to be constant over time, additive model

should be used. A pseudo-additive model

should be used when the data exhibits the

characteristics of the multiplicative series,

but parameter values are close to zero.

26.1 Overview 1651

Figure 26.6: Marine transit CV data, from

2010 to 2013.

Figure 26.7: Diagnostic plot for marine

transit CV data, from 2010 to 2013 (left); SI

chart (right).

The data decomposition/preparation process is illustrated with the

40-month time series of marine transit CVs from 2010-2013, whose values

are shown in Figure 26.6. The size of the peaks and troughs seems fairly

constant with respect to the changing trend; the SAS implementation of

X12 agrees with that assessment and suggests the additive decomposition

model, with no need for further data transformations.

The diagnostic plots are shown in Figure 26.7: the CV series is prior-

adjusted from the beginning until OCT2010 after the detection of a level

shift. The SI (Seasonal Irregular) chart shows that there are more than

one irregular component which exhibits volatility.

The adjusted series is shown in Figure 26.8.
14

It is on the irregular 14: The trend and irregular components

are also shown separately for readability.
component that detection anomaly would be conducted.

This example showcases the importance of domain understanding and

data preparation to the anomaly detection process. As the vast majority

of observations in a general problem are typically “normal”, we can

also view anomaly detection as a rare occurrence learning classification

problem or as a novelty detection data stream problem.
15

15: We discussed the former in Chapter

21; the latter will be tackled in Chapter 28.

Figure 26.8: Adjusted plot for marine tran-

sit CV data, from 2010 to 2013.

1652 26 Anomaly Detection and Outlier Analysis

While there a number of strategies that use regular classification/cluster-

ing algorithms for anomaly detection, they are rarely successful unless

they are adapted or modified for the anomaly detection context.

Basic Concepts A generic system (such as the monthly transit times

example) may be realized in normal states or in abnormal states. Normal-

ity, perhaps counter-intuitively, is not confined to finding the most likely

state, however, as infrequently occurring states could still be normal or

plausible under some interpretation of the system.

As the authors of [26] see it, a system’s states are the results of processes

or behaviours that follow certain natural rules and broad principles; the

observations are a manifestation of these states. Data, in general, allows

for inferences to be made about the underlying processes, which can

then be tested or invalidated by the collection of additional data.

When the inputs are perturbed, the corresponding outputs are likely to

be perturbed as well; if anomalies arise from perturbed processes, being

able to identify when the process is abnormal,
16

may lead to useful16: That is to say, being able to capture the

various normal and abnormal processes. anomaly detection.

Any supervised anomaly detection algorithm requires a training set of

historical labeled data (which may be costly to obtain) on which to build

the prediction model, and a testing set on which to evaluate the model’s

performance in terms of:

True Positives (TP, detected anomalies that actually arise from

process abnormalities);

True Negatives (TN, predicted normal observations that indeed

arise from normal processes);

False Positives (FP, detected anomalies corresponding to regular

processes), and

False Negatives (FN, predicted normal observations that are in

fact the product of an abnormal process).

Table 26.1: Confusion matrix for an

anomaly detection problem.

As discussed previously, the rare occurrence problem makes optimizing

for maximum accuracy

𝑎 =
TN + TP

TN + TP + FN + FP

a losing strategy; instead, algorithms attempt to minimize the FP rate

and the FN rate under the assumption that the cost of making a false

negative error could be substantially higher than the cost of making a

false positive error.

Assume that for a testing set with 𝛿 = FN+ TP true outliers, an anomaly

detection algorithm identifies 𝜇 = FP + TP suspicious observations, of

26.1 Overview 1653

which 𝜈 = TP are known to be true outliers. Performance evaluation in

this context is often measured using precision and recall.

Precision is the proportion of true outliers among the suspicious ones:

𝑝 =
𝜈
𝜇

=
TP

FP + TP

;

when most of the observations identified by the algorithm are true

outliers, 𝑝 ≈ 1; recall is the proportion of true outliers detected:

𝑟 =
𝜈
𝛿
=

TP

FN + TP

;

when most of the true outliers are identified by the algorithm, 𝑟 ≈ 1, and

the 𝐹1−score is the harmonic mean of the precision and the recall:

𝐹1 =
2𝑝𝑟

𝑝 + 𝑟 =
2TP

2TP + FP + FN

.

One drawback of using precision, recall, and the 𝐹1−score is that they

do not incorporate TN in the evaluation process, but this is unlikely

to be problematic as regular observations that are correctly seen as

unsuspicious are not usually the observations of interest.
17

17: Nevertheless, the analyst for whom the

full picture is important might want to fur-

ther evaluate the algorithm with the help

of the Matthews Correlation Coefficient
[37] or the specificity 𝑠 = TN

FP+TN
.

Example: consider a test dataset Te with 5000 observations, 100 of which

are anomalous. An algorithm which predicts all observations to be

anomalous would score 𝑎 = 𝑝 = 0.02, 𝑟 = 1, and 𝐹1 ≈ 0.04, whereas an

algorithm that detects 10 of the true outliers would score 𝑟 = 0.1.
18 □ 18: The other metric values would change

according to the TN and FN counts.

Table 26.2: Metric values for various supervised anomaly detection models.

Another supervised approach is to estimate the relative abnormality of

various observations: it is usually quite difficult to estimate the probability

that an observation x1 is anomalous with any certainty, but it might be

possible to determine that it is more likely to be anomalous than another

observation x2, say (denoted by x1 ⪰ x2).

This paradigm allows the suspicious observations to be ranked; let

𝑘𝑖 ∈ {1, . . . , 𝜇} be the rank of the 𝑖th true outlier, 𝑖 ∈ {1, . . . , 𝜈}, in the

sorted list of suspicious observations

x1 ⪰ x𝑘1
⪰ · · · ⪰ x𝑘𝑖 ⪰ · · · x𝑘𝜈 ⪰ x𝜇;

the rank power of the algorithm is

𝑅𝑃 =
𝜈(𝜈 + 1)
2

∑𝜈
𝑖=1

𝑘𝑖
.

When the 𝛿 actual anomalies are ranked near the top 𝛿 suspicious ones,

RP ≈ 1. The metric is well-defined only when 𝜇 ≥ 𝛿; as with most

1654 26 Anomaly Detection and Outlier Analysis

Figure 26.9: Oversampling, undersampling, and hybrid strategy for anomaly detection [22].

performance evaluation metrics, it is meaningful only in comparison
with the performance of other algorithms.

19
19: Other SL performance evaluation met-

rics include:

AUC – the probability of ranking a

randomly chosen anomaly higher

than a randomly chosen normal

observation (higher is better);

probabilistic AUC – a calibrated

version of AUC.

The rare occurrence problem can be tackled by using:

a manipulated training set (oversampling, undersampling, gener-

ating artificial instances);

specific SL AD algorithms (CREDOS, PN, SHRINK);

boosting algorithms (SMOTEBoost, RareBoost);

cost-sensitive classifiers (MetaCost, AdaCost, CSB, SSTBoost),

etc. [21]

The rare (anomalous) class can be oversampled by duplicating the rare

events until the data set is balanced (roughly the same number of

anomalies and normal observations). This does not increase the overall

level of information, but it will increase the misclassification cost.

The majority class (normal observations) can also be undersampled by

randomly removing:

“near miss” observations or

observations that are “far” from anomalous observations.

Some loss of information has to be expected, as are “overly general” rules.

Common strategies are illustrated in Figures 26.9 and Figure 26.10.

Another modern approach rests on the concept of dimension reduction
(see Chapter 23); autoencoders learn a compressed representation of the

data. In a sense, the reconstruction error measures how much information

is lost in the compression.

Anomaly detection algorithms are then applied to the compressed data:

we look for anomalous patterns or anomalous reconstruction errors.

26.1 Overview 1655

Figure 26.10: Generating artificial cases with SMOTE and DRAMOTE [33].

In the example of Figure 26.11, one observation is anomalous because

its compressed representation does not follow the pattern of the other

8 observations, whereas another observation is anomalous because its

reconstruction error is substantially higher than that of the other 8

observations.
20

We discuss autoencoders in more detail in Chapter 31. 20: Can you hazard a guess as to which

one is which?

On the unsupervised front, where anomalous/normal labels are not

known or used, if anomalies are those observations that are dissimilar

to other observations, and if clusters represent groupings of similar

observations, then observations that do not naturally fit into a cluster

could be potential anomalies.
21

21: There are a number of challenges asso-

ciated to unsupervised anomaly detection,

not the least of which being that most

clustering algorithms do not recognize po-

tential outliers (DBSCAN is a happy excep-

tion) and that some appropriate measure

of similarity/dissimilarity of observations

has to be agreed upon. Different measures

may lead to different cluster assignments,

as discussed in Chapter 22.

26.1.3 Motivating Example

In this chapter, we will illustrate the concepts and the algorithms of

anomaly detection on an artificial dataset.

Consider a dataset of 102 observations in ℝ4
; the first 100 observations

p1 , . . . , p100 are drawn from a multivariate N(𝝁,𝚺), with

𝝁 = (1,−2, 0, 1), 𝚺 =

©«
1 0.5 0.7 0.5

0.5 1 0.95 0.3

0.7 0.95 1 0.3

0.5 0.3 0.3 1

ª®®®¬ .

Setting-up the data

nobs = 100

mu = matrix(rep(c(1,-2,0,1),100), nrow=4)

Sigma = matrix(c(1, 0.5, 0.7, 0.5,

0.5, 1, 0.95, 0.3,

0.7, 0.95, 1, 0.3,

0.5, 0.3, 0.3, 1), nrow=4, ncol=4)

We use 𝚺’s Cholesky decomposition to generate random observations.

1656 26 Anomaly Detection and Outlier Analysis

Figure 26.11: Illustration of autoencoder compression/reconstruction for anomaly detection, modified from [6].

Cholesky decomposition

L = chol(Sigma)

nvars = dim(L)[1]

set.seed(0) # for replicability

r = t(mu + t(L) %*% matrix(rnorm(nvars*nobs),

nrow=nvars, ncol=nobs))

The summary statistics for the 100 “regular” observations are given

below:

Summarizing data

rdata = as.data.frame(r)

names(rdata) = c(’x1’, ’x2’, ’x3’, ’x4’)

summary(rdata)

x1 x2 x3 x4

Min. :-1.90 Min. :-4.41 Min. :-2.53 Min. :-1.99

1st Qu.: 0.38 1st Qu.:-2.65 1st Qu.:-0.62 1st Qu.: 0.34

Median : 0.93 Median :-2.02 Median :-0.05 Median : 0.94

Mean : 0.94 Mean :-1.98 Mean : 0.01 Mean : 0.94

3rd Qu.: 1.46 3rd Qu.:-1.40 3rd Qu.: 0.63 3rd Qu.: 1.59

Max. : 3.44 Max. : 0.52 Max. : 2.03 Max. : 2.81

We now add two observations z1 = (1, 1, 1, 1) and z4 = (4, 4, 4, 4) not

arising from N(𝝁,𝚺).

26.1 Overview 1657

Setting-up some outliers

pt.1 = c(1,1,1,1)

pt.2 = c(4,4,4,4)

rdata = rbind(rdata,pt.1,pt.2)

group = c(rep(1,nobs),2,3)

rdata = cbind(rdata,group)

The complete dataset is displayed below, with z1 in pink and z4 in green.

But since we will not usually know which observations are “regular” and

which are “anomalous”, let us remove the colouring.

Plotting and anonymizing the data

lattice::splom(rdata[,1:4], groups=group, pch=22)

lattice::splom(rdata[,1:4], pch=22)

Evidently, a visual inspection suggests that there are in fact 3 outliers

in the dataset: the two that were specifically added as such, but a 3rd

observation that was naturally outlying!

Multiple references were consulted in the preparation of this chapter,

in particular [1, 26]. Other good survey documents include [32, 17].

Specific methods and approaches are the focus of other papers: [3, 34,

30] (high-dimensional data), [18] (DOBIN), [2] (outlier ensembles), [23,

12] (isolation forest), [10, 8] (DBSCAN), [7] (LOF), [39, 19, 29, 27, 28]

(subspace method), [9] (time series data).

On the practical side, we would be remiss if we did not also mention

[5], but keep in mind that there is a plethora of quality online anomaly
detection tutorials in the programming language of your choice.

1658 26 Anomaly Detection and Outlier Analysis

26.2 Quantitative Approaches

Cluster-based methods are not the only types of UL anomaly detection

methods. Generally, they come in two flavours: distance-based and

density-based.

Distance-based methods include distance to all observations,

distance to 𝑘 nearest neighbours (𝑘NN), average distance to 𝑘NN,

median distance to 𝑘NN, etc.

Density-based methods include local outlier factor (LOF), isolation

forest, HDBSCAN, etc.

26.2.1 Distance Methods

In order to determine whether an observation is anomalous or not,

it must be compared to a set of other observations (anomalies are

relative, not absolute). In the distance-based context, one natural way

to compare observations is to consider their distance from one another,

with increasing distance from the others being increasingly suggestive of

anomalous status.

This approach works both in continuous and discrete cases, as long as

a distance function or a pre-computed table of pair-wise distances
between observations is given.

The choice of which sets of observations to use in this comparison

distinguishes the different distance-based algorithms.

Notation Let 𝐷 ⊂ ℝ𝑛
be an 𝑛-dimensional dataset, p, q ∈ 𝐷, 𝑃 ⊂ 𝐷 be

a subset of 𝐷. Assume that 𝑑 : 𝐷 × 𝐷 → ℝ gives the distance between p
and q, written 𝑑(p, q).

An anomaly detection algorithm provides a function 𝑎 : 𝐷 → ℝ that

describes how anomalous a given observation is. This induces an ordering

on the observations of 𝐷: if 𝑎(p) < 𝑎(q) for p, q ∈ 𝐷, then p is less
anomalous than q.

It could be necessary to define a threshold beyond which an observation

is considered anomalous; if 𝛼 ∈ ℝ is such a threshold, then any p ∈ 𝐷 is

absolutely anomalous if 𝑎(p) > 𝛼.

Similarity Measures A similarity measure is a real-valued function that

describes the similarity between two objects. A common construction is

to define the similarity 𝑤 between two observations p, q as

𝑤(p, q) = 1

1 + 𝑑(p, q) , for some distance 𝑑,

so that 𝑤 → 1 as 𝑑 → 0, and 𝑤 → 0 as 𝑑 → ∞.

A similarity measure can also be constructed between probability distri-

butions. Let 𝑋 and 𝑌 be two 𝑛-dimensional random vectors of (possibly)

different distribution with p.m.f./p.d.f. 𝑓𝑋 and 𝑓𝑌 , respectively.

26.2 Quantitative Approaches 1659

Let Ω be their shared domain. For discrete random variables, the

Hellinger distance is defined by

𝐻(𝑋,𝑌) =
(
1 −

∑
z∈Ω

√
𝑓𝑋(z) 𝑓𝑌(z)

)
1/2

;

for continuous random variables, it is defined by

𝐻(𝑋,𝑌) =
(
1 −

∫
Ω

√
𝑓𝑋(z) 𝑓𝑌(z) 𝑑z

)
1/2

.

If 𝑓𝑋 = 𝑓𝑌 (or 𝑓𝑋 = 𝑓𝑌 almost everywhere in the continuous case, that is,

except over a countable set), then∑
Ω

√
𝑓𝑥 𝑓𝑌 = 1 or

∫
Ω

√
𝑓𝑋 𝑓𝑌 𝑑z = 1

and 𝐻(𝑋,𝑌) = 0. The fact that 𝐻(𝑋,𝑌) ∈ [0, 1] is a consequence of

Cauchy’s inequality, with 𝑓 ∗
𝑋
=

√
𝑓𝑋 and 𝑓 ∗

𝑌
=

√
𝑓𝑌 :

0 ≤
∫
Ω

√
𝑓𝑋 𝑓𝑌 𝑑z =

∫
Ω

𝑓 ∗𝑋 𝑓
∗
𝑌 𝑑z

≤
(∫

Ω

| 𝑓 ∗𝑋 |
2 𝑑z

)
1/2

(∫
Ω

| 𝑓 ∗𝑌 |
2 𝑑z

)
1/2

=

(∫
Ω

𝑓𝑋 𝑑z
)

1/2
(∫

Ω

𝑓𝑌 𝑑z
)

1/2

= 1;

a similar argument holds for discrete random variables.

Recall that the covariance matrices 𝚺𝑋 and

𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑆𝑖𝑔𝑚𝑎𝑌 are 𝑛 × 𝑛-matrices whose (𝑖 , 𝑗)-th entries are the

covariance between the 𝑖-th and 𝑗-th positions of 𝑋 and 𝑌, respectively.

Given a collection of identically distributed samples, these covariance

matrices can be estimated.

We can also consider a single observation p to represent a probability

distribution. In that case, the Hellinger distance between that observation

and any other distribution with mean 𝝁 and covariance matrix 𝚺 can be

studied using the framework above, using the Mahalanobis distance:

𝑀(p) =
√
(p − 𝝁)⊤𝚺−1(p − 𝝁).

Alternatively, if p and q are drawn from the same distribution with

covariance 𝚺, then the Mahalanobis distance is a dissimilarity measure

between p and q:

𝑑𝑀(p, q) =
√
(p − q)⊤𝚺−1(p − q).

Example In general, we do not know the true mean vector 𝝁 and

covariance matrix𝚺 from which the data could arise, and the mean vector

and the covariance structure must be estimated from the data. In the

example of Section 26.1, we have:

1660 26 Anomaly Detection and Outlier Analysis

(mu.1 <- colMeans(rdata[,1:4]))

cov(rdata[,1:4])

x1 x2 x3 x4

0.96801577 -1.89096069 0.05602349 0.97433766

x1 x2 x3 x4

x1 0.8999038 0.5690744 0.6646093 0.5033570

x2 0.5690744 1.3124241 1.0685066 0.4694309

x3 0.6646093 1.0685066 0.9921537 0.3969461

x4 0.5033570 0.4694309 0.3969461 0.9043493

These are distinct from the true underlying collection of parameters 𝝁
and 𝚺, but close enough to be explained by sampling variation and

because z1 , z4 ≁ N(𝝁,𝚺).

We first attempt to identify the anomalous observations by computing the

Mahalanobis distance from the empirical distribution to all observations

in the dataset.

Sigma.inv = matlib::inv(cov(rdata[,1:4]))

M_d<-vector()

for(j in 1:nrow(rdata)){

M_d[j] <- sqrt(as.matrix(rdata[j,1:4]-mu.1) %*%

Sigma.inv %*%

t(as.matrix(rdata[j,1:4]-mu.1)))

}

rdata <- data.frame(rdata,M_d)

summary(M_d)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4622 1.3479 1.6764 1.7980 2.1010 6.6393

The summary suggests that there is (at least) one observation for which

the Mahalanobis distance to the empirical distribution is quite high.

library(dplyr) # we always assume that these

library(ggplot2) # two packages have been loaded

rdata |> ggplot(aes(x=M_d)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

rdata |> ggplot(aes(x=M_d)) +

geom_boxplot() + geom_rug(color="black")

26.2 Quantitative Approaches 1661

The histogram of Mahalanobis distances shows that most observations

are fairly “regular”, but that two of the observations have substantially

larger distances. The boxplot confirms it, but identifies a potential third

outlying observation.

Below, we display the scatter plot matrix of the 102 observations, with

colour intensity mapped to the Mahalanobis distance of the observation

from the empirical distribution (the code is omitted for readability).

It certainly seems as though z1 and z4 could be the two anomalies.

1662 26 Anomaly Detection and Outlier Analysis

Next, we plot the Mahalanobis distance from each observation to every

other observation.

M_pq<-matrix(nrow=nrow(rdata), ncol=nrow(rdata))

for(j in 1:nrow(rdata)){

for(i in 1:nrow(rdata)){

M_pq[j,i]<-sqrt(as.matrix(rdata[j,1:4]-rdata[i,1:4]) %*%

Sigma.inv %*%

t(as.matrix(rdata[j,1:4]-rdata[i,1:4])))

}

}

M_pq<-as.data.frame.table(M_pq)

M_pq[,1:2]<-lapply(M_pq[,1:2],as.numeric)

M_pq |> ggplot(aes(x=Var1,y=Freq)) +

geom_point(aes(fill=Freq,colour=Freq),pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#FFFFFF") +

scale_colour_continuous(high = "#0033FF", low = "#FFFFFF") +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Distance") +

theme_bw() + theme(legend.position = "none")

Note the differing patterns for observations 101 and 102, as well as the

diffuse cloud of points above the distance 5.0 for the other observations.

There are a few other observations for which the distances to other

observations seem to be larger than in a majority of the cases.

Next, we display the same distributions with the help of boxplots.

median.value <- M_pq |>

group_by(Var1) |>

summarise(meanDist=mean(Freq)) |>

summarise(median_value=median(meanDist))

test <- M_pq |>

group_by(Var1) |>

summarise(meanDist=mean(Freq)) |>

summarise(std=sd(meanDist))

26.2 Quantitative Approaches 1663

med.sd = test+median.value

M_pq |> ggplot(aes(x=as.factor(Var1),y=Freq)) +

geom_boxplot() +

scale_x_discrete(name="Observations") +

scale_y_continuous(name="Distance") +

theme_bw() + theme(legend.position = "none") +

geom_hline(yintercept=as.numeric(median.value),

linetype = "dashed", color = "red") +

geom_hline(yintercept=as.numeric(med.sd),

linetype = "dotted", color = "red") +

theme(axis.text.x = element_text(angle=90))

The long-dashed red line (see below) represents the median of all the

mean distances per observation; the short-dashed red line lies 1 standard

deviation above the median.

To simplify the reading of the situation, we plot only the mean distance

per observation, linking the colour intensity and the marker size to

the mean distance (blue corresponding to larger distances, as do larger

markers).

M_pq |> group_by(Var1) |> summarise(meanDist=mean(Freq)) |>

ggplot(aes(x=Var1,y=meanDist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Mean Distance") +

geom_point(aes(fill=meanDist,colour=meanDist,

size=meanDist),pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none") +

geom_hline(yintercept=as.numeric(median.value),

linetype = "dashed", color = "red") +

geom_hline(yintercept=as.numeric(med.sd),

linetype = "dotted", color = "red")

Do any other observations strike you as potential outliers?

1664 26 Anomaly Detection and Outlier Analysis

Similarity Measures (Reprise) If 𝚺 is diagonal, then

𝑑𝑀(p, q) =
√

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2
𝜎2

𝑖

,

where 𝜎2

𝑖
is the variance along the 𝑖-th dimension. If Σ is the identity

matrix, then we recover the Euclidean distance

𝑑2(p, q) =
√

𝑛∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2.

When using the Euclidean distance in an anomaly detection context, a

linear normalization is usually applied to each dimension so that each

entry lies in the hypercube [−1, 1]𝑛 . The Minkowski distance of order 𝑝

is a generalization of the Euclidean distance:

𝑑𝑝(p, q) =
(
𝑛∑
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |𝑝
)

1/𝑝

.

For 𝑝 = 2 we recover the Euclidean distance 𝑑2, for 𝑝 = 1 the Manhattan
distance

𝑑1(p, q) =
𝑛∑
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |,

and for 𝑝 = ∞ the supremum distance (also called the Chebychev
distance)

𝑑∞(p, q) =
𝑛

max

𝑖=1

|𝑝𝑖 − 𝑞𝑖 |.

Note that the Minkowski distance 𝑑𝑝 is only a distance function (i.e., a

metric) when 𝑝 ≥ 1.
22

22: But an exception is made for

𝑑−∞(p, q) =
𝑛

min

𝑖=1

|𝑝𝑖 − 𝑞𝑖 |

to fall within the same framework.

The Jaccard similarity of two datasets 𝑃 and 𝑄, is defined as the size of

their intersection divided by the size of their union

𝐽(𝑃, 𝑄) = |𝑃 ∩𝑄 |
|𝑃 ∪𝑄 | =

|𝑃 ∩𝑄 |
|𝑃 | + |𝑄 | − |𝑃 ∩𝑄 | .

Their Jaccard distance is then taken to be 1 − 𝐽(𝑃, 𝑄).23
23: This definition can be extended to

compare binary vectors (i.e. vectors with

entries in {0, 1}) of the same length. Given

two binary vectors p and q of length 𝑛,

consider an arbitrary set 𝐷 of size 𝑛. Then

p and q can be viewed as subsets of 𝐷: if

𝑝𝑖 = 1 then p is said to contain the 𝑖-th

element of 𝐷, while if 𝑝𝑖 = 0 then it does

not. Viewing p and q in this way allows

us to compute their Jaccard similarity, and

thus their Jaccard distance.

Finally, let p, q ≠ 0. Recall that p ·q = ∥𝑝∥∥𝑞∥ cos𝜃, where 𝜃 is the angle

between p and q. The cosine similarity between p and q is the cosine of

𝜃, which can be computed as

cos𝜃 =
𝑝 · 𝑞

∥𝑝∥∥𝑞∥ =

∑𝑛
𝑖=1
𝑝𝑖𝑞𝑖√∑𝑛

𝑖=1
𝑝2

𝑖

√∑𝑛
𝑖=1

𝑞2

𝑖

.

This value ranges between 1 and −1, with 1 attained when p = q, −1

when p = −q, and 0 when p and q are perpendicular. Armed with

these concepts, we can now explore distance-based methods for anomaly

detection; they will also eventually be useful for density-based anomaly

detection.

26.2 Quantitative Approaches 1665

Figure 26.12: 2D visualization of various

similarity metrics [36].

Distance-Based Anomaly Detection All these distance functions (simi-

larity measures) can be used to create basic anomaly detection algorithms

(the ideas can also be extended to more complex algorithms).

Given some distance function 𝑑, dataset 𝐷, and integers 𝑘, 𝜈 ≤ |𝐷 |, the

distance to all points (DTAP) anomaly detection algorithm considers

each observation p in 𝐷 and adds the distance from p to every other

observation in 𝐷, i.e.

𝑎(p) =
∑

q≠p∈𝐷
𝑑(q, p).

The 𝜈 observations with largest values for 𝑎 are then said to be anomalous
according to 𝑎. This approach often selects the most extreme observations

as anomalous, which may be of limited use in practice.

The distance to nearest neighbour (DTNN) algorithm defines

𝑎(p) = min

q≠p∈𝐷
𝑑(q, p),

with a similar definition for the 𝜈 anomalous observations. The average
distance to 𝑘 nearest neighbours and median distance to 𝑘 nearest
neighbours are defined similarly.

Example: Distance to All Points We start by building the DTAP anomaly

detector for the Euclidean distance (method="euclidean") on the scaled
artificial data, which is shown below.

rdata.scaled=data.frame(matrix(ncol = 4, nrow = nobs+2))

for(i in 1:4){

rdata.scaled[,i] <-

2/(max(rdata[,i]) - min(rdata[,i])) * rdata[,i] - 1

}

lattice::splom(rdata.scaled[,1:4], pch=22)

1666 26 Anomaly Detection and Outlier Analysis

The top 𝜈 = 6 anomalous observations are obtained as follows, with

accompanying plot:

m.L2 <- as.matrix(dist(rdata.scaled[,1:4],

method="euclidean"))

adoa.L2 <- data.frame(1:(nobs+2), rowSums(m.L2))

colnames(adoa.L2) <- c("obs","dist")

adoa.L2 <- adoa.L2[order(-adoa.L2$dist),]

rownames(adoa.L2) <- NULL

head(adoa.L2)

adoa.L2 |>

ggplot(aes(x=obs,y=dist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Sum of Euclidean Distances") +

geom_point(aes(fill=dist, colour=dist, size=dist),

pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs dist

102 241.7556

62 177.6135

14 113.9903

49 108.6464

55 106.5156

67 104.7870

26.2 Quantitative Approaches 1667

We can repeat this process for a variety of metrics.
24

24: We do not display the code that is

used for these other metrics; it can be

obtained with simple modifications from

the Euclidean code.

Chebychev (replace method="euclidean" by method="maximum")

obs dist

102 144.85387

62 114.83273

14 88.25016

55 81.47169

49 80.33274

101 73.11895

Manhattan (method="euclidean" ↦→ method="manhattan")

obs dist

102 473.7469

62 342.2531

14 197.7493

67 193.9257

49 191.7707

55 183.6509

Minkowski, 𝑝 = 1/2 ("euclidean" ↦→ "manhattan", p=0.5):

obs dist

102 1873.7488

62 1341.9020

67 731.9811

14 717.3451

49 700.5557

11 669.4313

Minkowski, 𝑝 = 4 ("euclidean" ↦→ "manhattan", p=4):

obs dist

102 3738.781

62 2672.940

67 1444.177

14 1403.799

49 1372.067

11 1318.830

We see that while observation 102 is always the most anomalous according

to DTAP, the ranking is affected by the choice of distance metric. Is this

surprising?

Example: Distance to Nearest Neighbour We next build the DTNN

anomaly detector for the Euclidean distance, again on the scaled artificial

data.

As before, we display the top 𝜈 = 6 anomalous observations and the

accompanying charts for 5 different metrics.

1668 26 Anomaly Detection and Outlier Analysis

As above, we only present the code in the Euclidean case; the remaining

metrics require only slight modifications. The factor 1000000 is used to

create a matrix with a strongly dominant diagonal, to exclude observa-

tions being found nearest to themselves. Depending on the dataset, this

factor could be reduced or may need to be increased.

m.L2 <- m.L2 + 1000000*diag(nobs+2)

adoa.L2 <- data.frame(1:(nobs+2),apply(m.L2,1,min))

colnames(adoa.L2) <- c("obs","dist")

adoa.L2 <- adoa.L2[order(-adoa.L2$dist),]

rownames(adoa.L2) <- NULL

head(adoa.L2)

adoa.L2 |>

ggplot(aes(x=obs,y=dist)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Minimum of Euclidean Distances") +

geom_point(aes(fill=dist, colour=dist, size=dist),

pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs dist

102 1.4549129

62 0.8667313

101 0.3746565

12 0.3611265

11 0.3186967

43 0.3145305

Chebychev (replace method="euclidean" by method="maximum")

obs dist

102 0.8269178

62 0.5203870

12 0.2449443

101 0.2368307

68 0.2356369

43 0.2214142

Manhattan (method="euclidean" ↦→ method="manhattan")

obs dist

102 2.8914743

62 1.6745725

12 0.6499116

101 0.6082916

11 0.5702036

23 0.4903152

26.2 Quantitative Approaches 1669

Minkowski, 𝑝 = 1/2 ("euclidean" ↦→ "manhattan", p=0.5):

obs dist

102 10.534441

62 6.559370

101 1.857222

11 1.704864

23 1.618388

12 1.591956

Minkowski, 𝑝 = 4 ("euclidean" ↦→ "manhattan", p=4):

obs dist

102 20.605432

62 13.059856

101 3.521821

11 3.081000

23 2.979090

12 2.809583

There are commonalities: certain observations come back repeatedly as

likely anomalous observations.

Note, however, that the anomaly rankings change according to the

selected distance function and the choice of algorithm; the choice of

data scaling approach could also have an impact.

This is par for the course in the anomaly detection context.

26.2.2 Density Methods

Density-based approaches view observations as anomalous if they occur

in low-density regions.

Figure 26.13: Low-density areas as outlier

nurseries [6].

1670 26 Anomaly Detection and Outlier Analysis

Density-based methods include:

local outlier factors;

DBSCAN, and

isolation forests.

Local Outlier Factor The Local Outlier Factor (LOF) algorithm was

proposed in 2000 by [7] (a summary can be found in Section 6.4.2 of [26]).

LOF works by measuring the local deviation of each observation in a

dataset from its 𝑘 nearest neighbours, with a point said to be anomalous

if this deviation is large.

A local 𝑘−region 𝑁𝑘(p) around an observation p is defined as the 𝑘

nearest neighbours of p. The density of observations in each of their

respective local 𝑘−neighbourhoods is estimated (the local density),

and compared to the density of the local 𝑘−neighbourhoods of the

observations within their own 𝑘−neighbourhood.

This can then be used to identify outliers that inhabit regions of lower

density than their neighbours, as p would be in Figure 26.14.

Figure 26.14: In this example, p has lower

𝑘−local density than its 2−neighbours

q1 , q2.

The formal procedure is implemented in the algorithm of Figure 26.15.

Any observation with a LOF 𝑎𝑘(p) above some threshold 𝜏 is a local out-
lier, but selecting is not obvious. LOF introduces the idea of a reachability
distance, which improves the stability of results within clusters/regions:

within 𝑁𝑘(p), it is

𝑑reach(p, q) = max

ℓ
{𝑑(p, qℓ); qℓ ∈ 𝑁𝑘(p)},

the maximal distance to its 𝑘−neighbours; outside of 𝑁𝑘(p), it is

𝑑reach(p, q) = 𝑑(p, q),

the actual distance.

In Figure 26.16, assuming 𝑘 = 3, the observations q1 , q2 , q3 all have the

same reachability distance from p as they are all 3-neighbours of p, that

is,

𝑑reach(p, q1) = 𝑑reach(p, q2) = 𝑑reach(p, q3) = 𝑑(p, q3).

The observation q4, on the other hand, has 𝑑reach(p, q4) = 𝑑(p, q4) as it is

not a 𝑘-neighbour of p.

26.2 Quantitative Approaches 1671

Figure 26.15: LOF algorithm.

Example LOF is implemented in R via the Rlof package; we apply it to

the scaled data using the Euclidean and the Chebychev distances.

dist.L2 = dist(rdata.scaled[,1:4], method="euclidean")

lof <- Rlof::lof(dist.L2, k=4)

rdata.lof.L2 = data.frame(rdata.scaled[,1:4],lof)

rdata.lof.obs.L2 = data.frame(1:(nobs+2),lof)

names(rdata.lof.obs.L2) = c("obs",’lof’)

rdata.lof.obs.L2 <-

rdata.lof.obs.L2[order(-rdata.lof.obs.L2$lof),]

rownames(rdata.lof.obs.L2) <- NULL

head(rdata.lof.obs.L2)

rdata.lof.obs.L2 |>

ggplot(aes(x=obs,y=lof)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Local outlier factor

(k=4, d=Euclidean)") +

geom_point(aes(fill=lof, colour=lof, size=lof), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

1672 26 Anomaly Detection and Outlier Analysis

Figure 26.16: Illustration of reachability

with 𝑘 = 3.

obs lof

102 5.377542

62 5.100218

12 1.609463

55 1.481152

27 1.475414

14 1.402112

dist.sup = dist(rdata.scaled[,1:4], method="maximum")

lof <- Rlof::lof(dist.sup, k=4)

rdata.lof.sup = data.frame(rdata.scaled[,1:4],lof)

rdata.lof.obs.sup = data.frame(1:(nobs+2),lof)

names(rdata.lof.obs.sup) = c("obs",’lof’)

rdata.lof.obs.sup <-

rdata.lof.obs.sup[order(-rdata.lof.obs.sup$lof),]

rownames(rdata.lof.obs.sup) <- NULL

head(rdata.lof.obs.sup)

rdata.lof.obs.sup |>

ggplot(aes(x=obs,y=lof)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Local outlier factor

(k=4, d=Supremum)") +

geom_point(aes(fill=lof, colour=lof, size=lof), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs lof

102 2.984990

62 2.917587

14 1.636228

27 1.542470

12 1.466011

79 1.342456

26.2 Quantitative Approaches 1673

DBSCAN Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) was proposed in 1996 by [10] (a summary can be found in

Section 4.1.5 of [26], as well as in Section 22.4.1). As its name suggests,

it is a density-based clustering algorithm that groups nearby observa-

tions together and labels observations that do not fall in the clusters as

anomalies/outliers.

Hierarchical DBSCAN (HDBSCAN) [8] was introduced in 2013. It notably

removes the problem of choosing the parameter for the radius of a neigh-

bourhood by considering all “possible” radii. Further documentation

can be found at [25].

In DBSCAN,

an observation p is a core point if there is a minimum of 𝑚

observations within distance 𝑟 of p;

an observation q is a border point (or non-core point) if it is not

itself a core point but is within distance 𝑟 of one, and

an observation o is an outlier if it is neither a core point nor a

border point.

Figure 26.17: For minimum neighbour-

hood size 𝑚 = 2 and the fixed radius 𝑟 as

displayed, o is an outlier, p is a core point,

and q1 , q2 are border points.

DBSCAN considers each observation in the dataset individually. If that

observation is an outlier, then it is added to a list of outliers. Otherwise if

it is a core point, then its 𝑟-neighbourhood forms the beginning of a new

cluster. Each observation in this 𝑟-neighbourhood is then considered in

turn, with the 𝑟-neighbourhoods of other core observations contained in

the neighbourhood being added to the cluster.

This expansion repeats until all observations have been examined. During

this step, observations that were previously labelled as outliers may be

updated as they become border points in the new cluster. This process

continues until every observation has either been assigned to a cluster or

labelled as an outlier.

The formal procedure is implemented in the algorithm of Figure 26.18.

While DBSCAN’s dual use as a clustering algorithm may seem irrelevant

in the outlier detection setting, it is its ability to succesfully identify clus-

ters that is crucial for labeling the remaining observations as outliers.

DBSCAN/HDSBCAN Strengths:

the number of clusters does not need to be known beforehand

(unlike in 𝑘−means and other clustering algorithms);

clusters of arbitrary shape can be detected;

when using HDBSCAN, only the parameter for the minimum
cluster size 𝑚 is required, which can be set fairly intuitively.

25
25: This is not the case for the parameters

in general clustering algorithms: if the

elements of𝐷 are 𝑛−dimensional, the only

restriction is that 𝑚 ≥ 𝑛 + 1 (larger values

of 𝑚 allow for better noise identification).

1674 26 Anomaly Detection and Outlier Analysis

Figure 26.18: DBSCAN algorithm.

DBSCAN/HDBSCAN Limitations:

it is not deterministic, as border points can be assigned to different

clusters depending on the order in which core observations are

considered – this does not affect its use as an anomaly detection

algorithm, however;

in high-dimensional spaces, the ability of any Euclidean-based

distance function to distinguish near and distant observations

diminishes due to the Curse of Dimensionality; in such spaces, it

becomes ineffective (as do other clustering algorithms);

26.2 Quantitative Approaches 1675

it cannot handle differences in local densities as the radius of a

neighbourhood 𝑟 is fixed; this could lead to sparser clusters being

labelled as outliers, or to outliers surrounding a denser cluster

being included in the cluster (this issue is overcome in HDBSCAN).

Example We use the R implementation of DBSCAN, HDBSCAN, and

OPTICS (another density-based clustering algorithm) found in the dbscan

package; we apply various parameters to the scaled artificial data, using

the Euclidean distance in all instances.
26

26: We display all the accompanying

charts in Figures 26.19 and 26.20.

scaled = scale(rdata[,1:4])

set.seed(1) # for replicability

DSBCAN, eps = 0.4, minPts = 4

(db.1 <- dbscan::dbscan(scaled, eps = .4, minPts = 4))

lattice::splom(scaled, groups=db.1$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 96 noise points.

0 1

96 6

Evidently, 0.4 is too small a value for eps or 4 is too large a value for

minPts (or both).

DSBCAN, eps = 1, minPts = 4

(db.2 <- dbscan::dbscan(scaled, eps = 1, minPts = 4))

lattice::splom(scaled, groups=db.2$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 6 noise points.

0 1

6 96

The results are reversed with a larger value of eps.

1676 26 Anomaly Detection and Outlier Analysis

DSBCAN, eps = 1, minPts = 10

(db.3 <- dbscan::dbscan(scaled, eps = 1, minPts = 10))

lattice::splom(scaled, groups=db.3$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 24 noise points.

0 1

24 78

Are the clustering results (i.e., the anomaly discovery rate) as expected?

The interaction between the parameters can have unpredictable effects.

DSBCAN, eps = 2, minPts = 10

(db.4 <- dbscan::dbscan(scaled, eps = 2, minPts = 10))

lattice::splom(scaled, groups=db.4$cluster + 1L, pch=22)

The clustering contains 1 cluster(s) and 2 noise points.

0 1

2 100

HDBSCAN, minPts = 4

(hdb <- dbscan::hdbscan(scaled, minPts = 4))

lattice::splom(scaled, groups=hdb$cluster + 1L, pch=22)

The clustering contains 4 cluster(s) and 71 noise points.

0 1 2 3 4

71 10 6 4 11

Note the absence of the eps parameter.

OPTICS, eps = 1, minPts = 4, eps_cl = 1, xi=.0527
27: Read the dbscan package documenta-

tion for details.

opt <- dbscan::optics(scaled, eps = 1, minPts = 4)

(opt.1 <- dbscan::extractDBSCAN(opt, eps_cl = 1))

lattice::splom(rdata[,1:4], groups=opt.1$cluster + 1L, pch=22)

(opt.2 <- dbscan::extractXi(opt, xi = .05))

lattice::splom(scaled, groups=opt.2$cluster + 1L, pch=22)

The clustering contains 1 The clustering contains 4

cluster(s) and 6 noise points. cluster(s) and 7 noise points.

0 1 0 1 2 3 4

6 96 7 4 4 11 76

Are there any suprises?

26.2 Quantitative Approaches 1677

Figure 26.19: Clustering outcomes (outliers in blue): DBSCAN, top left (eps = 0.4, minPts = 4); DBSCAN, top right (eps = 1, minPts =
4); DBSCAN, bottom left (eps = 1, minPts = 10); DBSCAN, bottom right (eps = 2, minPts = 10).

1678 26 Anomaly Detection and Outlier Analysis

Figure 26.20: Clustering outcomes (outliers in blue): HDBSCAN, top (minPts = 4); OPTICS, bottom left (eps = 0.4, minPts = 4, eps_cl
= 1, xi = 0.05); OPTICS, bottom right (eps = 0.4, minPts = 4, eps_cl = 1, xi = 0.05).

26.2 Quantitative Approaches 1679

Isolation Forest The approaches that were previously discussed first

construct models of what normal observations look like, and then identify

observations that do not fit this model.

The Isolation Forest algorithm [23] introduced in 2008 instead tries to

explicitly identify outliers under the assumptions that there are few
outliers in the data and that these outliers have very different attributes
compared to normal (or regular) observations.

This allows the use of sampling techniques that increase algorithmic

speed while decreasing memory requirements.

The algorithm attempts to isolate anomalous observations by randomly
selecting an attribute and then randomly selecting a split between

that attribute’s min and max values. This recursively partitions the

observations until every observation is isolated in its own partition

component.

Recursive partitioning yields a binary tree called an Isolation Tree
(IsoTree):

the root of this tree is the entire dataset;

each node is a subset of the observations;

each branch corresponds to one of the generated partitions, and

the leaves are sets containing a single isolated observation.

Each observation is then assigned a score derived from how deep in the
tree its singleton partition appears. Observations that are shallower in

the tree are easier to separate from the rest – these are likely outliers.

Since only shallow observations are of interest, once the height of the

tree has reached a given threshold,
28

further construction of the tree 28: The expected height of a random bi-

nary tree, say.
can be stopped to decrease computational cost.

Instead of building a tree from the entire dataset, a tree can be constructed

from a subset. The location of any observation within this smaller tree can

then be estimated, again saving computational and memory resources.

These two improvements are detailed in the original paper [23].

The formal procedure is implemented in the algorithm of Figure 26.21.

Once a number of Isolation Trees have been randomly generated (an

Isolation Forest), a score can be computed for each point. This is done by

searching each tree for the location of a given point and noting the path

length required to reach it. Once an observation’s path length in each

1680 26 Anomaly Detection and Outlier Analysis

Figure 26.21: Isolation Tree algorithm.

tree has been computed, the average path length is taken to be its score.

In isolated forests, low scores are indicative of outlying behaviour.

The formal procedure is implemented in the algorithm of Figure 26.23.

It can be desirable to construct a normalized anomaly score independent

of the size of the dataset. In order to do this, the expected path length

of a random observation in an Isolation Tree (i.e. binary tree) must be

estimated. With |𝐷 | = 𝑛, it can be shown that the expected length is

𝑐(𝑛) = 2𝐻(𝑛 − 1) − 2(𝑛 − 1)
𝑛

,

where 𝐻(𝑛 − 1) is the (𝑛 − 1)th harmonic number, which can be ap-

proximated by ln(𝑛 − 1) + 0.577; 𝑐(𝑛) is then used to normalize the final

anomaly score 𝑎(p) for p ∈ 𝐷, which is given by

log
2
𝑎(p) = −average path length to p in the Isolation Trees

𝑐(𝑛) .

Thus defined, 𝑎(p) ∈ [0, 1], with 𝑎(p) ≈ 1 suggesting p is an anomaly,

𝑎(p) ≤ 0.5 suggesting p is a normal observation; if all observations

receive a score ≈ 0.5, this suggests that there are no anomalies present.

IsoForest Strengths:

small time and memory requirements;

can handle high dimensional data, and

do not need observations to have been labeled anomalies in the

training set.

26.2 Quantitative Approaches 1681

Figure 26.22: Isolation Forest schematics [6].

IsoForest Main Limitation:

the anomaly score assigned to a given point can have high variance

over multiple runs of the algorithm. The authors of [12] propose

some solutions.

Example We use the R implementation of IsoForest found in the

solitude package; we apply various parameters to the scaled artifi-

cial data, using the Euclidean distance in all instances. Note that this

implementation uses a different scoring system, in which high scores are

indicative of anomalous observations.

#library(solitude)

set.seed(1) # for replicability

index = 1:102

We initiate an isolation forest:

iso = solitude::isolationForest$new(

sample_size = length(index))

iso$fit(dataset = rbind(scaled[index,1:4],c(0,0,0,0)))

test<-iso$predict(scaled[index,1:4]) # scores for Tr data

The top 𝜈 = 6 IsoForest anomaly scores are given below:

rdata.iso = data.frame(1:(nobs+2),test$anomaly_score)

names(rdata.iso) = c("obs","anomaly_score")

rdata.iso <- rdata.iso[order(-rdata.iso$anomaly_score),]

rownames(rdata.iso) = NULL

head(rdata.iso)

rdata.iso |>

ggplot(aes(x=obs,y=anomaly_score)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="IsoForest Anomaly Score") +

1682 26 Anomaly Detection and Outlier Analysis

Figure 26.23: Isolation Forest algorithm.

geom_point(aes(fill=anomaly_score, colour=anomaly_score,

size=anomaly_score), pch=22) +

scale_fill_continuous(high = "#0033FF", low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF", low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs anomaly_score

102 0.7795207

62 0.7480289

55 0.6379525

29 0.6228751

49 0.6218485

67 0.6182687

The profile of anomaly scores has a fairly distinct look (although we

recognize quite a few of the usual suspects).

In general, density-based schemes are more powerful than distance-based

schemes when a dataset contains patterns with diverse characteristics,

but less effective when the patterns are of comparable densities with
the outliers [35].

26.3 Qualitative Approaches 1683

Figure 26.24: 3−way, 2−way, and 1−way tables for the artificial example; the percentages of the levels above certain thresholds provide

information about the spread of each of the categorical variables.

26.3 Qualitative Approaches

Non-numerical variables present new challenges when it comes to

anomaly detection. A categorical variable29
is one whose levels are 29: Or qualitative variable.

measured on a nominal scale; examples include an object’s colour, an

individual’s mother tongue, her favourite meal, and so on.

The central tendency of a categorical variable is usually given by its

mode; measures of spread are harder to define consistently.
30

30: One possibility is to use the propor-

tion of levels with more than a certain

percentage of the observations above a

given threshold.

Consider a dataset with 𝑛 = 517 observations and 𝑝 = 3 predictors:

age (24−, 24 − 44, 45 − 64, 65+);

mother tongue (French, English, Mandarin, Arabic, Other), and

hair colour (black, brown, blond, red).

The respective modes are 24 − 44, English, and brown. We can see the

distribution tables in Figure 26.24, as well as the number of levels that

contain more than 15% and more than 25% of the observations.

We often associate qualitative features to numerical values, but with the

caveat that these should not be interpreted as numerals.
31

31: If we use the code “red” = 1, “blond”

= 2, “brown” = 3, and “black” = 4 to

represent hair colour, we cannot conclude
that “blond” > “red”, even though 2 > 1,

or that “black” − “brown” = “red”, even

though 4 − 3 = 1.

A categorical variable that has exactly two is called a dichotomous
feature (or a binary variable); those with more than two levels are called

polytomous variables.
32

32: While we are on the topic, regression

on categorical variables is called multino-
mial logistic regression.

Commonly-used distances (apart from the 0 − 1 distance and the related

Hamming distance) typically require numerical inputs. Anomaly detec-

tion methods based on distance or on density are not recommended in

the qualitative context.
33

Another option is to look at combinations of 33: Unless the distance function has been

modified appropriately, but that is harder

to do than one may expect.

feature levels, but this can prove computationally expensive.

We present two specific categorical anomaly detection methods below:

the attribute value frequency algorithm, and the greedy algorithm.

1684 26 Anomaly Detection and Outlier Analysis

26.3.1 Attribute Value Frequency Algorithm

The Attribute Value Frequency (AVF) algorithm offers a fast and simple

way to detect outlying observations in categorical data; it can be conducted

without having to create ir which minimizes the amount of data analyses,

without having to create or search through various combinations of

feature levels, which reduces the overall runtime.

Intuitively, outlying observations are points which occur relatively infre-

quently in the (categorical) dataset; an “ideal” anomalous point is one for

which each feature value is anomalous (or relatively infrequent). The

rarity of an attribute level can be measured by adding the number of

times the corresponding feature takes that value in the dataset.

Consider a 𝑝−dimensional dataset with 𝑛 observations: {x𝑖}, 𝑖 = 1, . . . , 𝑛

(each observation is a vector of 𝑝 features). We write

x𝑖 = (𝑥𝑖 ,1 , · · · , 𝑥𝑖 ,ℓ , · · · , 𝑥𝑖 ,𝑝),

where 𝑥𝑖 ,ℓ is x𝑖 ’s ℓ th feature’s level.

In the artificial categorial dataset presented previously above, we (per-

haps) have

x1 = (𝑥1,1 , 𝑥1,2 , 𝑥1,3) = (24−, French, brown)
...

x517 = (𝑥517,1 , 𝑥517,2 , 𝑥517,3) = (24−,Mandarin, black).

Using the reasoning presented above, the AVF score is a good tool to

determine whether x𝑖 should be considered an outlier or not:

AVFscore(x𝑖) =
1

𝑝

𝑝∑
ℓ=1

𝑓 (𝑥𝑖 ,ℓ),

where 𝑓 (𝑥𝑖 ,ℓ) is the number of observations x for which the ℓ th feature

takes on the level 𝑥𝑖 ,ℓ .

A low AVF score indicates that the observation is more likely to be an

outlier. Since AVFscore(x𝑖) is essentially a sum of 𝑝 positive values, it is

minimized when each of the sum’s term is minimized, individually.
34

34: What does this assume, if anything at

all, about the features’ independence.

Thus, the “ideal” anomalous observation (in the sense described above)

minimizes the AVF score; the minimal score is reached when each of the

observation’s features’ levels occur only once in the dataset.
35

35: Strictly speaking, the AVF score would

be minimized when each of the observa-

tion’s features’ levels occur zero time in

the dataset, but then . . . the observation

would not actually be in the dataset.

For an integer 𝜈, the suggested outliers are the 𝜈 observations signatures

with smallest AVF score; the algorithm’s complexity is 𝑂(𝑛𝑝).

The formal procedure is implemented in the algorithm of Figure 26.25.

The 10 lowest AVF scores in the artificial categorical dataset are high-

lighted on the next page.

26.3 Qualitative Approaches 1685

Figure 26.25: AVF algorithm.

For instance,

AVFscore(24−, French, blond) = 1

3
(𝑓 (24−) + 𝑓 (French) + 𝑓 (blond))

= 1

3
(175 + 141 + 79) = 131.7

For anomaly detection purposes, individual raw AVF scores are not as

meaningful as relative AVF scores.

26.3.2 Greedy Algorithm

The greedy algorithm “greedyAlg1” is an algorithm which identifies

the set of candidate anomalous observations in an efficient manner.
36

36: Greedy in the sense that the algorithm

picks the next step according to what is

best there-and-now, and not with a long-

term view.

The mathematical formulation of the problem is simple – given a dataset

𝐷 and a number 𝜈 of anomalous observations to identify, we solve the

optimization problem

OS = arg min

𝑂⊆𝐷
{𝐻(𝐷 \ 𝑂)}, subject to |𝑂 | = 𝜈,

1686 26 Anomaly Detection and Outlier Analysis

where the entropy of the subset 𝐷 \ 𝑂 is the sum of the entropy of each

feature on 𝐷 \ 𝑂 (see Section @ref(ML-CVE-dt)):

𝐻(𝐷 \ 𝑂) = 𝐻(𝑋1;𝐷 \ 𝑂) + · · · + 𝐻(𝑋𝑚 ;𝐷 \ 𝑂)

and

𝐻(𝑋ℓ ;𝐷 \ 𝑂) = −
∑

𝑧ℓ ∈𝑆(𝑋ℓ ;𝐷\𝑂)
𝑝(𝑧ℓ) log 𝑝(𝑧ℓ),

where 𝑆(𝑋ℓ ;𝐷 \𝑂) is the set of levels that the ℓ th feature takes in𝐷 \𝑂.

The “greedyAlg1” algorithm solves the problem as follows:

1. The set of outlying and/or anomalous observations OS is initially

set to be empty, and all observations of 𝐷 \ OS are identified as

normal (or regular).

2. Compute 𝐻(𝐷 \ OS).
3. Scan the dataset in order to select a candidate anomalous observa-

tion: every normal observation x is temporarily taken out of 𝐷 \OS

to create a subset 𝐷′
x, whose entropy 𝐻(𝐷′

x) is also computed.

4. The observation z which provides the maximal entropy impact,
i.e. the one that minimizes

𝐻(𝐷 \ OS) − 𝐻(𝐷′
x), x ∈ 𝐷 \ OS,

is added to OS.

5. Repeat steps 2-4 another 𝜈 − 1 times to obtain a set of 𝜈 candidate

anomalous observations.

More details can be found in the source article [15]; an interesting detail

is that it is scalable – it will also work for big datasets, provided the right

framework is used.

26.4 Anomalies in High-Dimensional Data

Nowadays, real datasets are often quite large; in some scenarios, the

observations may contain 100s or 1000s of features (or dimensions).

Many classical methods use proximity (distance) concepts for anomaly

detection (see Section 26.2) and can only be expected to work reasonably

well in cases where the sample size 𝑛 is larger than the dimension 𝑝.

The management of high-dimensional data (𝑛 < 𝑝) offers specific

difficulties: in such spaces observations are often isolated and scattered
(or sparse) and the notion of proximity fails to maintain its relevance.

In that case, the notion of defining significant outliers is much more

complex: many conventional methods of detecting outliers are simply

not efficient in the high-dimensional context, due to the curse of dimen-
sionality. Consequently, high-dimensional anomaly detection methods
are linked with dimension reduction and feature selection.

The remainder of this section is organized as follows: first, an attempt is

made to define the concept and the challenges; then, anomaly detection

techniques are discussed; finally, we end with a detailed description of

ensembles and subspace methods. Our approach mainly follows those

found in [1, 2, 26, 20, 4].

26.4 High-Dimensional Data 1687

26.4.1 Definitions and Challenges

As we have seen previously, an anomalous observation is one that deviates

or behaves differently from other the observations in the dataset, which

makes us suspect that it was generated by some other mechanism [1];

such an observation would, of course, be considered to be irregular.

The challenges of anomaly and outlier detection in high-dimensional
data (HDD) are due to:

the notion of distance becoming irrelevant due to the curse of

dimensionality (whence “the problem of detecting outliers is like

finding a needle in a haystack” [20]);

every point in such datasets has a tendency to be an outlier, and

datasets become more sparse as the dimension of the feature space

increases.

The authors of [3] consider that in order to deal properly with large

datasets, detection methods should:

1. allow for effective management of sparse data issues;

2. provide interpretability of the discrepancies (i.e., how the be-

haviour of such observations is different);

3. allow anomaly measurements to be compared (“apples-to-apples”);

4. consider the local data behaviour to determine whether an obser-

vation is abnormal or not.

26.4.2 Projection Methods

HDLSS (high dimension, low sample size) datasets can contain 100+

variables; the curse of dimensionality affects the efficiency of conventional

anomaly/outlier detection methods.

One way to counter the problem is to reduce the dataset’s dimensionality
while preserving its essential characteristics. We have discussed such

projection methods in Chapter 23. Let us see how one of them, principal
components analysis, can be applied to anomaly detection.

37
37: We take advantage of this reprise to

present PCA using a different formalism.

PCA (Reprise) As we know, principal components analysis (PCA) aims

to find a representation of the original dataset in a lower-dimensional

subspace (such as a line or a plane) containing the greatest possible

variation.

PCA corresponds to an orthogonal linear transformation of the data into

a new coordinate system, such that the largest variance resulting from a

scalar projection of the data is on the first coordinate (the first principal
component), the second largest variance on the second coordinate, etc.

PCA is used in various contexts:

as a dimension reduction method used during the data pre-

processing step;

as a data visualization aid, and, in the scenario of interest for this

section,

as an anomaly and outlier detection approach.

1688 26 Anomaly Detection and Outlier Analysis

Let the dataset be represented by a numerical, centered, and scaled 𝑛 × 𝑝
matrix X = [X1 , · · · ,X𝑝] with 𝑛 observations (number of rows) and 𝑝

features (number of columns).

The principal components are linear combinations of the variables:

Y𝑖 = ℓ⊤𝑖 X = ℓ1,𝑖X1 + · · · + ℓ𝑝,𝑖X𝑝 ; 𝑖 = 1, · · · , 𝑘,

with 𝑘 ≤ 𝑝, yielding the largest variance subjet to the constraint ∥ℓ𝑖 ∥ = 1

(where ∥ · ∥ represents the Euclidean norm).

We can thus deduce that

Var (Y𝑖) = Var

(
ℓ⊤𝑖 X

)
= ℓ⊤𝑖 X⊤Xℓ𝑖 = ℓ⊤𝑖 X⊤Xℓ𝑖

Cov (Y𝑖 ,Y𝑘) = Cov

(
ℓ⊤𝑖 X, ℓ⊤𝑘 X

)
= ℓ⊤𝑖 X⊤Xℓ𝑘 .

PCA finds the loadings vector ℓ1 which maximizes the variance of Y1:

ℓ1 = arg max

∥ℓ1∥=1

{
ℓ⊤X⊤Xℓ

}
,

then the uncorrelated loadings vector ℓ2 which maximizes the variance

of Y2:

ℓ2 = arg max

∥ℓ2∥=1, ℓ⊤
1
ℓ2=0

{
ℓ⊤X⊤Xℓ

}
.

Similarly, the loadings vector ℓ𝑘 is not correlated with any of the ℓ𝑖 , 𝑖 < 𝑘,

and maximizes the variance of Y𝑘 :

ℓ𝑘 = arg max

∥ℓ𝑘 ∥=1,
ℓ⊤
𝑖
ℓ𝑘=0, ∀ 𝑖<𝑘

{
ℓ⊤X⊤Xℓ

}
.

We solve this optimization problem for all 𝑖 < 𝑘 through the Lagrangian

𝐿 = ℓ⊤𝑘 X⊤Xℓ𝑘 − 𝜆𝑘(ℓ⊤𝑘 ℓ𝑘 − 1) − 𝑤ℓ⊤𝑖 ℓ𝑘 .

The critical points are found by differentiating with respect to each of the

entries of ℓ𝑘 , 𝜆𝑘 and 𝑤, and setting the result to 0, which translates to:

X⊤Xℓ𝑘 = 𝜆𝑘ℓ𝑘

ℓ⊤𝑘 ℓ𝑘 = 1 and ℓ⊤𝑘 ℓ𝑖 = 0, for all 𝑖 < 𝑘.

The loadings vector ℓ𝑘 is thus the eigenvector of the covariance matrix

X⊤X associated to the 𝑘th largest eigenvalue. The proportion of the
variance which can be explained by the PCA can be calculated by first

noting that

𝑝∑
𝑖=1

Var (Y𝑖) =
𝑝∑
𝑖=1

ℓ⊤𝑖 X⊤Xℓ𝑖 =
𝑝∑
𝑖=1

𝜆𝑖 .

Consequently, the proportion of the total variance explained by the 𝑖th

principal component is

0 ≤ 𝜆𝑖∑𝑝

𝑖=1
𝜆𝑖

≤ 1.

26.4 High-Dimensional Data 1689

The quality of the PCA results is strongly dependent on the number

of retained principal components, that is, on the dimension 𝑘 of the

subspace on which the observations are projected. There are multiple

ways to select the “right” 𝑘 – we will briefly present two of them.

The proportion of the total variance explained by the first 𝑘 principal

components is given by

𝑝𝑘 =

∑𝑘
𝑖=1

𝜆𝑖∑𝑝

𝑖=1
𝜆𝑖
.

One approach is to retain 𝑘 principal components, where 𝑘 is the smallest

value for which 𝑝𝑘 surpasses some pre-established threshold.
38

38: Often taken between 80% and 90%.

The scree plot method, on the other hand, consists in drawing the curve

given by the decreasing eigenvalues (the scree plot), and to identify the

curve’s “elbows”. These points correspond to principal components for

which the variance decreases at a slower rate with added components. If

such an elbow exists, we would retain the eigenvalues up to it.
39

39: And thus, the corresponding principal

components.

Example The leukemia_big.csv contains genetic expression mea-

surements for 𝑛 = 72 leukemia patients and 𝑝 = 7128 genes [13].

leukemia.big <- read.csv("leukemia_big.csv")

scale and format data

leukemia.big <- t(leukemia.big)

leukemia.big.scaled <- scale(leukemia.big)

We find the PCA decomposition and display the plots.

pca.leukemia <- prcomp(leukemia.big.scaled)

plot(pca.leukemia)

pca.leukemia.s <- summary(pca.leukemia)

plot(pca.leukemia.s$importance[3,])

https://www.data-action-lab.com/wp-content/uploads/2023/04/leukemia_big.csv

1690 26 Anomaly Detection and Outlier Analysis

The scree plot suggests that only two principal components should be

retained, but that does not explain an awful lot of the variation. Even

keeping the first 3 principal components only explains roughly 20% of

the variation.

The projection on the first 3 PC is shown below [author unknown]:

It is not obvious, however, that the methods presented here to find an

optimal 𝑘 are appropriate for anomaly detection purposes: simply put,

a good 𝑘 is one which allows for good anomaly detection.

There are other PCA-associated dimension reduction methods: indepen-

dent components analysis, singular value decomposition, kernel PCA,

etc. (see Chapter 23).

But what is the link with anomaly and/or outlier detection?

Once the dataset has been projected on a lower-dimensional subspace,

the curse of dimensionality is (hopefully) mitigated – traditional methods

are then applied to the projected data.

Dimension reduction usually leads to a loss of information, however,

which can affect the accuracy of the detection procedure – especially

if the presence/absence of anomalies is not aligned with the dataset’s

principal components.

Figure 26.26: Examples of data analyti-

cal tasks that are out of alignment with

PCA: pancake problem (left), in which the

interesting problem might be to find the

number of pancakes, but the PCA might

focus on the pile’s base; non-orthogonal

components (right), where the data does

not follow an orthogonality relation. Mod-

ified from [31].

26.4 High-Dimensional Data 1691

Example Let us re-visit the artificial dataset from the earliest sections.

We start by computing the PCA decomposition of the scaled dataset.

pca.rdata <- prcomp(scaled)

plot(pca.rdata)

This suggests that data is almost 1-dimensional.
40

We display the data 40: Although the kink is on the 2nd prin-

cipal component; we will revisit this soon.
on the first PC and highlight the “true” anomalies in the data.

plot(pca.rdata$x[,1])

pca.rdata.2=data.frame(pca.rdata$x[,1:4],rdata[,5])

plot(pca.rdata.2[,1], col=group, pch=22)

We now recreate the Mahalanobis framework on the reduced 1D data. First,

we compute the empirical parameters. Next, we display the Mahalanobis

distances of observations to the empirical distribution.

mu.2 <- mean(pca.rdata.2[,1])

Sigma.inv.2 = 1/var(pca.rdata.2[,1])

M_d.2<-vector()

for(j in 1:nrow(rdata)){

M_d.2[j]<-sqrt(as.matrix(pca.rdata.2[j,1]-mu.2) %*%

Sigma.inv.2 %*%

t(as.matrix(pca.rdata.2[j,1]-mu.2)))

}

pca.rdata.3 <- data.frame(pca.rdata.2,M_d.2)

summary(M_d)

1692 26 Anomaly Detection and Outlier Analysis

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4622 1.3479 1.6764 1.7980 2.1010 6.6393

The corresponding histogram is given below.

pca.rdata.3 |> ggplot(aes(x=M_d.2)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

One outlier (observation 102, as it turns out) is still clearly visible, but

observation 101 (which the Mahalanobis approach on the full unscaled

dataset cleanly picks out, see Section 26.2}) gets lost in the cloud of points

when we only focus on the first PC. Whatever makes the latter an outlier

is out of alignment with PC1.

Let us use PC1 and PC2 to see if we can find out what is going on. The

anomalies are highlighted below:

pca.rdata.2=data.frame(pca.rdata$x[,1:4],rdata[,5])

lattice::splom(pca.rdata.2[,1:2], groups=group, pch=22)

26.4 High-Dimensional Data 1693

We now recreate the Mahalanobis framework on the reduced 2D data.

First, we compute the empirical parameters. Next, we display the his-

togram of Mahalanobis distances of observations to the empirical distri-

bution.

mu.2 <- colMeans(pca.rdata.2[,1:2])

Sigma.inv.2 = matlib::inv(cov(pca.rdata.2[,1:2]))

M_d.2<-vector()

for(j in 1:nrow(rdata)){

M_d.2[j]<-sqrt(as.matrix(pca.rdata.2[j,1:2]-mu.2) %*%

Sigma.inv.2 %*%

t(as.matrix(pca.rdata.2[j,1:2]-mu.2)))

}

pca.rdata.3 <- data.frame(pca.rdata.2,M_d.2)

pca.rdata.3 |> ggplot(aes(x=M_d.2)) +

geom_histogram(colour="black",binwidth = 0.5) +

geom_rug() + theme_bw()

This suggests (again) that there are 2 anomalies in the data.
41

41: The chart code is omitted – see previ-

ous examples for a baseline.

pca.rdata.4 = data.frame(1:(nobs+2),pca.rdata.3$M_d.2)

names(pca.rdata.4) = c("obs","PCA_Mahalanobis")

pca.rdata.4 <- pca.rdata.4[order(-pca.rdata.4$PCA_Mahalanobis),]

rownames(pca.rdata.4) <- NULL

head(pca.rdata.4)

obs PCA_Mahalanobis

102 4.681526

62 3.521898

3 2.556683

12 2.418989

55 2.405540

39 2.295610

This again fails to capture observation 101 as an anomaly.

1694 26 Anomaly Detection and Outlier Analysis

Perhaps if we use 3 PC? The anomalies are highlighted below.
42

42: We omit the code as it is similar to the

previous examples. Modify it as needed.

The histogram once against suggests that there are 2 anomalies in the

data.

Unfortunately, the reduced 3D data once again fails to capture observation

101 as an anomaly.

obs PCA_Mahalanobis

102 4.896637

62 3.523881

14 2.867856

12 2.822241

27 2.656084

3 2.575923

Is the fact that observation 101 not captured here related to dimension
reduction, or is it an issue related to scaling? Is there something that can

be done to separate the two procedures? Can we get the benefits of PCA

dimension reduction without having to scale the data?

26.4 High-Dimensional Data 1695

Distance-Based Outlier Basis Using Neighbours As we have seen, us-

ing PCA for anomaly detection is potentially problematic: whether an

observation is anomalous or not does not figure in the construction of

the principal component basis {PC1 , . . . , PC𝑘} – there is not necessarily

a correlation between the axes of heightened variance and the presence

or absence of anomalies.

The distance-based outlier basis using neighbours algorithm (DOBIN)

builds a basis which is better suited for the eventual detection of outlying

observations. DOBIN’s main concept is to search for nearest neighbours

that are in fact relatively distant from one another:

1. We start by building a space Y = {yℓ } which contains 𝑀 ≪
𝑛(𝑛 + 1)/2 vectors of the form

yℓ = (x𝑖 − x𝑗) ⊙ (x𝑖 − x𝑗),

where ⊙ is the element-by-element Hadamard multiplication, and

for which the 1−norm

∥yℓ ∥1 = (𝑥1,1 − 𝑥2,1)2 + · · · + (𝑥1,𝑝 − 𝑥2,𝑝)2

is the square of the distance between x𝑖 , x𝑗 ∈ X (the selection of

each of the 𝑀 observation pairs is made according to a rather

complex procedure which only considers x𝑖 and x𝑗 if they are part

of one another’s 𝑘−neighbourhood, for 𝑘 ∈ {𝑘1 , . . . , 𝑘2}); the set Y
thus contains points for which ∥yℓ ∥1 is relatively large, which is to

say that the observations x𝑖 are x𝑗 fairly distant from one another

even if they are 𝑘−neighbours of each other;

2. we next build a basis {𝜼1 , . . . , 𝜼𝑝} ⊂ ℝ𝑝
where each 𝜂𝑖 is a unit

vector given by a particular linear combination of points in Y; they

can be found using a Gram-Schmidt-like procedure:

yℓ0 = yℓ , ℓ = 1, . . . , 𝑀

𝜼1 =

∑𝑀
ℓ=1

yℓ∑𝑀
ℓ=1

yℓ

2

yℓ1 = yℓ − ⟨𝜼1 | yℓ ⟩, ℓ = 1, . . . , 𝑀

𝜼2 =

∑𝑀
ℓ=1

yℓ1∑𝑀
ℓ=1

yℓ1

2

...

yℓ𝑏−1
= yℓ𝑏−2

− ⟨𝜼𝑏−1 | yℓ𝑏−2
⟩, ℓ = 1, . . . , 𝑀

𝜼𝑏 =

∑𝑀
ℓ=1

yℓ𝑏−1∑𝑀
ℓ=1

yℓ𝑝−1

2

,

for 𝑏 = 1, . . . , 𝑝,

3. and we transform the original dataset X via X̂ = T(X)𝚯, where

T(X) normalizes each feature of X according to a problem-specific

scheme (Min-Max or Median-IQR, say), and

𝚯 = [𝜼1 | · · · | 𝜼𝑝]

is an orthogonal 𝑝 × 𝑝 matrix.

1696 26 Anomaly Detection and Outlier Analysis

It is on the transformed space (which plays an analogous role to the

subspace projection of X in PCA) that we apply the various outlier and

anomaly detection algorithms.

The full details contain a fair number of technical complications; the

interested reader is invited to consult the original documentation [18].

Example DOBIN is implemented in R via the dobin package. In the

example below, note that the data is not scaled.

out <- dobin::dobin(rdata[,1:4], frac=0.9, norm=3)

arbitrary choice to keep kk not too large

but respond to dataset size

kk <- min(ceiling(dim(rdata)[1]/10),25)

dimension reduction

knn_dist <- FNN::knn.dist(out$coords[, 1:3], k = kk)

knn_dist <- knn_dist[,kk]

ord <- order(knn_dist, decreasing=TRUE)

knn_dist.dobin <- data.frame(1:(nobs+2),knn_dist)

names(knn_dist.dobin) = c("obs","knn_dobin")

knn_dist.dobin <-

knn_dist.dobin[order(-knn_dist.dobin$knn_dobin),]

rownames(knn_dist.dobin) <- NULL

head(knn_dist.dobin)

knn_dist.dobin |>

ggplot(aes(x=obs,y=knn_dobin)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="11NN Distance - DOBIN") +

geom_point(aes(fill=knn_dobin, colour=knn_dobin,

size=knn_dobin), pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs knn_dobin

102 5.029217

62 2.982912

14 1.700037

49 1.540807

101 1.453970

67 1.375444

Look: observation 101 got caught in the DOBIN net!

26.4 High-Dimensional Data 1697

Figure 26.27: Feature bagging algorithm.

26.4.3 Subspace Methods

Subspace methods have been used particularly effectively by analysts

for anomaly and outlier detection in high-dimensional datasets [2, 14,

20]; it is often easier to find the sought-after observations by exploring

lower-dimensional subspaces (rather than the original set) – in that

sense, subspace methods are akin to feature selection methods, whereas

projection methods are closer to dimension reduction methods.

There is thus an intrinsic interest in exploring subspaces in their own

right [1, 4]. This approach eliminates additive noise effects often found

in high dimensional spaces and leads to more robust outliers (that is,

outliers which are identified as such by multiple methods).

The problem is rather difficult to solve effectively and efficiently, since

the potential number of subspace projections of high-dimensional data

is related exponentially to the number of features in the dataset. The

Feature Bagging algorithm formally uses the LOF algorithm of Section

26.2, but any fast anomaly detection algorithm could also be used instead.

The anomaly scores and rankings from each run are aggregated as they

are in the Independent Ensemble approach (see Section 26.4.4).

There are other, more sophisticated, subspace anomaly detection methods,

including:

High-dimensional Outlying Subspaces (HOS) [39];

Subspace Outlier Degree (SOD) [19];

Projected Clustering Ensembles (OutRank) [29];

Local Selection of Subspace Projections (OUTRES) [27].

Example The feature bagging algorithm is implemented in R via the

HighDimOut package (not available on CRAN as of May 2022, but it has

been archived . We apply it to our trusty artificial dataset.

https://cran.r-project.org/src/contrib/Archive/HighDimOut/

1698 26 Anomaly Detection and Outlier Analysis

res.FBOD <- HighDimOut::Func.FBOD(data = rdata[,1:4],

iter=10, k.nn=5)

rdata.FBOD <- data.frame(1:(nobs+2),res.FBOD)

names(rdata.FBOD) = c("obs","FBOD")

rdata.FBOD <- rdata.FBOD[order(-rdata.FBOD$FBOD),]

head(rdata.FBOD)

rdata.FBOD %>%

ggplot(aes(x=obs,y=FBOD)) +

scale_x_continuous(name="Observations") +

scale_y_continuous(name="Feature Bagging Anomaly Score,

k=5, M=10") +

geom_point(aes(fill=FBOD, colour=FBOD, size=FBOD),

pch=22) +

scale_fill_continuous(high = "#0033FF",

low = "#CCCCCC") +

scale_colour_continuous(high = "#0033FF",

low = "#CCCCCC") +

theme_bw() + theme(legend.position = "none")

obs FBOD

102 3.82

62 3.45

55 1.64

67 1.61

33 1.58

74 1.52

26.4.4 Ensemble Methods

In the preceding sections, we have described various anomaly detection

algorithms whose relative performance varies with the type of data being

considered. As is the case with pretty much of all of data science, it is

impossible to come up with an algorithm that outperforms all the others

[38].

This is because a particular anomaly detection algorithm may be well-

adapted to a dataset and may be successful in detecting abnormal or

outlier observations, but it may not work with other datasets whose

characteristics do not match the first dataset. The impact of such a

mismatch between algorithms can be mitigated by using ensemble
methods, where the results of several algorithms are considered before

making a final decision. Such an approach often provides the best results

and thus improves the performance of the base anomaly detection

algorithms [26].

We will consider two types of ensemble methods: sequential ensembles
(boosting) and independent ensembles.

26.4 High-Dimensional Data 1699

Figure 26.28: Sequential ensemble algo-

rithm.

Sequential Ensembles Sequential ensembles require a given algorithm

(or a set of algorithms) to be applied to a dataset in a sequential manner,

each time on slightly different dataset derived from the previous step’s

dataset based on the previous steps’ results, and so forth. At each step,

the weight associated with each observation is modified according to the

preceding results using some “boosting” method.
43

The final result is 43: Such as AdaBoost or XGBoost, for in-

stance.
either some weighted combination of all preceding results, or simply the

results output by the last step in the sequence.

The formal procedure is provided in Figure 26.28.
44

44: The details are out-of-scope for this

chapter, but they are available in Section

21.5.3.

Independent Ensembles In an independent ensemble, we instead apply

different algorithms (or different instances of the same algorithm) to the

dataset (or a resampled dataset). Choices made at the data and algorithm

level are independent of the results obtained in previous runs.
45

The 45: Unlike in a sequential ensemble.

results are then combined to obtain more robust outliers.

Every base anomaly detection algorithm provides an anomaly score for

each observation in 𝐷; observations with higher scores are considered to

be more anomalous, observations with lower scores more normal.

The results are then combined using a task-specific method in order to pro-

vide a more robust classification of anomalous or outlying observations.

Many such combination techniques used in practice:

majority vote,

average,

minimal rank, etc.

Let 𝛼𝑖(p) represent the (normalized) anomaly score of p ∈ 𝐷, according

to algorithm 𝐴𝑖 . If 𝛼𝑖(p) ≈ 0, it is unlikely that p is an anomaly according

to 𝐴𝑖 , whereas if 𝛼𝑖(p) ≈ 1, it is quite likely that p according to 𝐴𝑖 .

The rank of p ∈ 𝐷 according to 𝐴𝑖 , on the other hand, is denoted by 𝑟𝑖(p):
the higher the rank (smaller number), the higher the anomaly score and

vice versa. In a dataset with 𝑛 observations, the rank varies from 1 to 𝑛.
46

46: Ties are allowed.

1700 26 Anomaly Detection and Outlier Analysis

Figure 26.29: Independent ensemble algo-

rithm.

If the base detection algorithms are 𝐴1 , . . . , 𝐴𝑚 , the anomaly score and

the rank of an observation p ∈ 𝐷 according to the independent ensemble

method are, respectively,

𝛼(p) = 1

𝑚

𝑚∑
𝑖=1

𝛼𝑖(p) and 𝑟(p) = min

1≤𝑖≤𝑚
{𝑟𝑖(p)}.

If 𝑛 = 𝑚 = 3, for instance, we could end up with

𝛼1 (p1) = 1.0, 𝛼1 (p2) = 0.9, 𝛼1 (p3) = 0.0;

𝛼2 (p1) = 1.0, 𝛼2 (p2) = 0.8, 𝛼2 (p3) = 0.0;

𝛼3 (p1) = 0.1, 𝛼3 (p2) = 1.0, 𝛼3 (p3) = 0.0.

Using the mean as the combination techniques, we obtain

𝛼 (p1) = 0.7, 𝛼 (p2) = 0.9, 𝛼 (p3) = 0.0,

whence

p2 ⪰ p1 ⪰ p3 ,

that is, p2 is more anomalous than p1, which is more anomalous than

p3.
47

47: We are using the notation introduced

in Section 26.1.2.

Using the minimal rank method, we obtain

𝑟1 (p1) = 1, 𝑟1 (p2) = 2, 𝑟1 (p3) = 3;

𝑟2 (p1) = 1, 𝑟2 (p2) = 2, 𝑟2 (p3) = 3;

𝑟3 (p1) = 2, 𝑟3 (p2) = 1, 𝑟3 (p3) = 3,

from which

𝑟 (p1) = 𝑟 (p2) = 1, 𝑟 (p3) = 3,

and so p1 ⪰ p3 and p2 ⪰ p3, but p1, p2 have the same anomaly levels.

Evidently, the results depend not only on the dataset under consideration

and on the base algorithms that are used in the ensemble, but also on

how they are combined.

26.4 High-Dimensional Data 1701

In the context of HDLSS data, ensemble methods can sometimes allow

the analyst to mitigate some of the effects of the curse of dimensionality

by selecting fast base algorithms (which can be run multiple times) and

focusing on building robust relative anomaly scores.

Another suggested approach is to use a different sub-collection of the

original dataset’s features at each step, in in order to de-correlate the

base detection models (see feature bagging, in Section 26.4.3).

Even without combining the results, it may be useful to run multiple

algorithms on different subspaces to produce an Overview of Outliers
(O3), implemented in the R package OutliersO3, by A. Unwin .

O3d <- OutliersO3::O3prep(rdata[,1:4],

method=c("HDo", "PCS", "BAC", "adjOut", "DDC", "MCD"))

O3d1 <- OutliersO3::O3plotM(O3d)

cx <- data.frame(outlier_method=names(O3d1$nOut),

number_of_outliers=O3d1$nOut)

table(cx, row.names=FALSE)

O3d1$gO3

outlier_method number_of_outliers

HDo 8

PCS 1

BAC 2

adjOut 2

DDC 1

MCD 2

The columns on the left indicate the subspace variables (see row colour-

ing). The columns on the right indicate which observations were identi-
fied as outliers by at least 1 method in at least 1 subspace.

48
48: The available methods are all

methods that we have not discussed:

HDoutliers() from the package

HDoutliers, FastPCS() from the package

FastPCS, mvBACON() from robustX,

adjOutlyingness(), covMcd() from

robustbase, DectectDeviatingCells()

from cellWise.

The colours depict the number of methods that identify each observation

in each subspace as an outlier. For instance, Observation 102 is identified

as an outlier by 6 methods in 2 subspaces, 5 methods in 3 subspaces,

https://cran.r-project.org/web/packages/OutliersO3/index.html

1702 26 Anomaly Detection and Outlier Analysis

4 methods in 2 subspaces, 3 methods in 1 subspace, 2 methods in 4

subspaces, and 1 method in 3 subspaces – it is clearly the most anomalous
observation in the dataset. Observations 62 and 101 are also commonly

identified as outliers.

Are the results aligned with those we have obtained throughout the

chapters?

Ensemble approaches allow analysts to take a big picture view of the

anomaly landscape, but it should be recalled that anomaly detection and

outlier analysis is still very active as an area of research, with numerous

challenges. The No Free Lunch Theorem suggests that, importantly, there
is no magic method: all methods have strengths and limitations, and the

results depend heavily on the data.

26.5 Exercises

1. Use other metrics and parameter values to find distance-based anomalies, LOF outliers, DBSCAN/HDB-

SCAN/OPTICS outliers, and Isolation Forest outliers in the artificial dataset.

2. Consider the datasets:

GlobalCitiesPBI.csv

2016collisionsfinal.csv

polls_us_election_2016.csv

HR_2016_Census_simple.xlsx

UniversalBank.csv

algae_blooms.csv

a) Find distance-based anomalies in the datasets

b) Find density-based anomalies in the datasets.

c) Find categorical anomalies in the datasets that have categorical features.

d) Find projection-based anomalies in the datasets.

e) Find subspace-based anomalies in the datasets

f) Find ensemble-based anomalies in the datasets.

3. Conduct an analysis of anomalous observations in the 2011 Gapminder data (as described in Chapters 20,

21, 22, and 23).

4. Consider the dataset flights1_2019_1.csv .

a) Explore and visualize the dataset.

b) Do any observations appear to be anomalous or outlying? Justify your answer.

c) If necessary, reduce the dimension of the dataset prior to analysis.

d) Using at least 4 anomaly detection algorithms, identify anomalous observations in the dataset.

e) Can you validate the results?

https://www.data-action-lab.com/wp-content/uploads/2019/09/GlobalCitiesPBI.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/2016collisionsfinal.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/polls_us_election_2016.csv
https://www.data-action-lab.com/wp-content/uploads/2019/11/HR_2016_Census_simple.xlsx
https://www.data-action-lab.com/wp-content/uploads/2019/11/UniversalBank.csv
https://www.data-action-lab.com/wp-content/uploads/2021/08/algae_blooms.csv
https://www.data-action-lab.com/wp-content/uploads/2020/09/Flights1_2019_1.csv

Chapter References 1703

Chapter References
[1] C.C. Aggarwal. Outlier Analysis. Springer International Publishing, 2016.

[2] C.C. Aggarwal and S. Sathe. Outlier Ensembles: An Introduction. Springer International Publishing, 2017.

[3] C.C. Aggarwal and P.S. Yu. ‘Outlier detection for high dimensional data’. In: SIGMOD Rec. 30.2 (2001),

pp. 37–46. doi: http://doi.acm.org/10.1145/376284.375668.

[4] A. Archimbaud. ‘Détection non-supervisée d’observations atypiques en contrôle de qualité : un survol’.

In: Journal de la Société Française de Statistique 159.3 (2018), pp. 1–39.

[5] L. Arora. An Awesome Tutorial to Learn Outlier Detection in Python Using PyOD . Analytics Vidhya.

2019.

[6] D. Baron. Outlier Detection . XXX Winter School of Astrophysics on Big Data in Astronomy, GitHub

repository. 2018.

[7] M.M. Breunig et al. ‘LOF: Identifying Density-Based Local Outliers’. In: SIGMOD Rec. 29.2 (2000),

pp. 93–104.

[8] R.J.G.B. Campello, D. Moulavi, and J. Sander. ‘Density-Based Clustering Based on Hierarchical Density

Estimates’. In: Advances in Knowledge Discovery and Data Mining. Ed. by Jian Pei et al. Springer Berlin

Heidelberg, 2013, pp. 160–172.

[9] C. Chen and L.-M. Liu. ‘Joint Estimation of Model Parameters and Outlier Effects in Time Series’. In:

Journal of the American Statistical Association 88 (Mar. 1993). doi: 10.2307/2290724.

[10] M. Ester et al. ‘A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise’. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.

KDD’96. AAAI Press, 1996, pp. 226–231.

[11] P. Gogoi et al. ‘A Survey of Outlier Detection Methods in Network Anomaly Identification.’ In: Comput.
J. 54.4 (2011), pp. 570–588.

[12] S. Hariri, M. Carrasco Kind, and R. J. Brunner. ‘Extended Isolation Forest’. In: IEEE Transactions on
Knowledge and Data Engineering (2019).

[13] T. Hastie. Leukemia dataset .

[14] Z. He, S. Deng, and X. Xu. ‘A Unified Subspace Outlier Ensemble Framework for Outlier Detection’. In:

Advances in Web-Age Information Management. Ed. by Wenfei Fan, Zhaohui Wu, and Jun Yang. Springer

Berlin Heidelberg, 2005, pp. 632–637.

[15] Z. He et al. ‘A Fast Greedy Algorithm for Outlier Mining’. In: Advances in Knowledge Discovery and Data
Mining. Ed. by Wee-Keong Ng et al. Springer, 2006, pp. 567–576.

[16] Height Percentile Calculator, by Age and Country .

[17] V. Hodge and J. Austin. ‘A survey of outlier detection methodologies’. In: Artif. Intell. Rev. 22.2 (2004),

pp. 85–126.

[18] S. Kandanaarachchi and R. Hyndman. Dimension reduction for outlier detection using DOBIN. Sept. 2019.

doi: 10.13140/RG.2.2.15437.18403.

[19] H.-P. Kriegel et al. ‘Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data’. In:

Advances in Knowledge Discovery and Data Mining. Ed. by Thanaruk Theeramunkong et al. Springer

Berlin Heidelberg, 2009, pp. 831–838.

[20] A. Lazarević and V. Kumar. ‘Feature Bagging for Outlier Detection’. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. KDD ’05. Association for

Computing Machinery, 2005, pp. 157–166. doi: 10.1145/1081870.1081891.

[21] A. Lazarević, J. Srivastava, and V. Kumar. Data Mining for Analysis of Rare Events: A Case Study in
Security, Financial and Medical Applications . Tutorial. 2004.

[22] T. Le et al. ‘A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for

Bankruptcy Prediction’. In: Complexity (2019). doi: 10.1155/2019/8460934.

https://doi.org/http://doi.acm.org/10.1145/376284.375668
https://www.analyticsvidhya.com/blog/2019/02/outlier-detection-python-pyod/
https://github.com/dalya/IAC_Winter_School_2018
https://doi.org/10.2307/2290724
https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html
https://tall.life/height-percentile-calculator-age-country
https://doi.org/10.13140/RG.2.2.15437.18403
https://doi.org/10.1145/1081870.1081891
https://www-users.cse.umn.edu/~lazar027/pakdd04_tutorial.pdf
https://www-users.cse.umn.edu/~lazar027/pakdd04_tutorial.pdf
https://doi.org/10.1155/2019/8460934

1704 26 Anomaly Detection and Outlier Analysis

[23] F.T. Liu, K.M. Ting, and Z.-H. Zhou. ‘Isolation Forest’. In: Proceedings of the Eighth IEEE International
Conference on Data Mining. Ed. by Fosca Giannotti et al. IEEE International Conference on Data Mining

2008, ICDM 2008. IEEE, 2008, pp. 413–422.

[24] O. Maimon and L. Rokach, eds. Data Mining and Knowledge Discovery Handbook. 2nd ed. New York:

Springer, 2010.

[25] L. McInnes, J. Healy, and S. Astels. How HDBSCAN Works . 2016.

[26] K.G. Mehrotra, C.K. Mohan, and H.M. Huang. Anomaly Detection Principles and Algorithms. Springer,

2017.

[27] E. Müller, M. Schiffer, and T. Seidl. ‘Adaptive Outlierness for Subspace Outlier Ranking’. In: Proceedings
of the 19th ACM International Conference on Information and Knowledge Management. CIKM ’10. Toronto,

ON, Canada: Association for Computing Machinery, 2010, pp. 1629–1632.

[28] E. Müller, M. Schiffer, and T. Seidl. ‘Statistical Selection of Relevant Subspace Projections for Outlier

Ranking’. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering. ICDE ’11.

IEEE Computer Society, 2011, pp. 434–445. doi: 10.1109/ICDE.2011.5767916.

[29] E. Müller et al. ‘Outlier Ranking via Subspace Analysis in Multiple Views of the Data’. In: 2012 IEEE
12th International Conference on Data Mining. 2012, pp. 529–538. doi: 10.1109/ICDM.2012.112.

[30] E. Müller et al. ‘OutRank: Ranking Outliers in High-Dimensional Data’. In: 2008 IEEE 24th International
Conference on Data Engineering Workshop. 2008, pp. 600–603. doi: 10.1109/ICDEW.2008.4498387.

[31] A. Ng and K. Soo, eds. Surviving a Disaster, in Numsense! algobeans, 2016.

[32] Outlier Detection: a Survey. Technical Report TR 07-017. 2007.

[33] O. Soufan et al. ‘Mining Chemical Activity Status from High-Throughput Screening Assays’. In: PloS
one 10.12 (2015). doi: 10.1371/journal.pone.0144426.

[34] P.D. Talagala, R.J. Hyndman, and K. Smith-Miles. Anomaly Detection in High Dimensional Data. 2019.

doi: 10.48550/ARXIV.1908.04000.

[35] J. Tang et al. ‘Capabilities of Outlier Detection Schemes in Large Datasets, Framework and Methodolo-

gies’. In: Knowl. Inf. Syst. 11.1 (Jan. 2007), pp. 45–84.

[36] D. Whitenack. Machine Learning With Go. Packt Publishing, 2017.

[37] Wikipedia. ‘Matthews Correlation Coefficient ’. In: ().

[38] D.H. Wolpert and W.G. Macready. ‘No free lunch theorems for optimization’. In: IEEE Transactions on
Evolutionary Computation (1997).

[39] J. Zhang et al. ‘Hos-Miner: A System for Detecting Outlyting Subspaces of High-Dimensional Data’. In:

Proceedings of the Thirtieth International Conference on Very Large Data Bases. VLDB ’04. Toronto, Canada:

VLDB Endowment, 2004, pp. 1265–1268.

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://doi.org/10.1109/ICDE.2011.5767916
https://doi.org/10.1109/ICDM.2012.112
https://doi.org/10.1109/ICDEW.2008.4498387
https://doi.org/10.1371/journal.pone.0144426
https://doi.org/10.48550/ARXIV.1908.04000
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

Text Analysis and Text Mining 27
27.1 Introduction 1705

Case Study: BOTUS 1705
Text Analysis 1710
TM vs. NLP 1711

27.2 Basics of Text Analysis . . . 1713
Text Collection 1715
Text Representation 1716
Text Processing 1716
Text Statistics 1721
Text Visualization 1723

27.3 Text Mining Tasks 1724
Classification 1725
Clustering 1728
Sentiment Analysis 1729

27.4 Examples 1734
NHL Game Recaps I 1734
Shakespeare vs. Marlowe . 1749
The Play’s the Thing . . . 1765
Ham or Spam 1775
NHL Game Recaps II . . . 1789
The Scottish Play 1794
Regular Expressions . . . 1808
Movie Reviews 1812

27.5 Exercises 1820
Chapter References 1821

by Patrick Boily, with contributions from Andrew Macfie

In this chapter, we introduce the basic notions of text mining so that we

can learn how to extract insight from text data. We also present some

elementary applications (drawn from the world of machine learning),

including sentiment analysis, setting the stage for a more sophisticated

treatment of natural language processing and large language models
(see Chapters 31 and 32).

27.1 Introduction

We start our foray into text analysis by discussing a use case for text

mining which made the news early in 2017.

27.1.1 Case Study: BOTUS

In 2013, the BBC reported on various ways in which social media giant

Twitter was changing the world, detailing specific instances in the fields

of business, politics, journalism, sports, entertainment, activism, arts,

and law [27].

It is not always clear what influence Twitter users have, if any, on world

events or business and cultural trends; it was once thought (perhaps with-

out appropriate evidence) that entertainers, athletes, and celebrities, that

is to say, users with extremely high followers to following ratios, wielded

more “influence” on the platform than world leaders [4]. Certainly, such

users continue to be among the most popular – as of September 13,

2017, Twitter’s 40 most-followed accounts tend to belong to entertainers,

celebrities, and athletes, with a few exceptions [11].

One account has recently bridged the gap between celebrity and politics

in an explosive manner: @realDonaldTrump, which belongs to the 45th

President of the United States of America, has maintained a very strong

presence on Twitter. As of September 13, 2017, the account had 38,205,766

followers, and it was the 26th most-followed account on the planet,

producing 35,755 tweets since it was activated in March 2009, and

roughly 6 tweets a day in August of 2017 [11].

Titles BOTUS [15], Trump & Dump Bot [42]

Authors Tradeworx (BOTUS), T3 (Trump & Dump)

1706 27 Text Analysis and Text Mining

Date 2017

Sponsor NPR’s podcast Planet Money (BOTUS)

Methods sentiment analysis, social media monitoring, AI, real-time

analysis, simulations

Objective There is some evidence to suggest that tweets from the 45th

POTUS may have an effect on the stock market [21]. Can sentiment analysis

and AI be used to take real-time advantage of the tweets’ unpredictable

nature? Let’s take a look at bots built for that purpose by NPR’s Planet
Money and by T3 (an Auston advertising agency).

Methodology Tradeworx followed these steps:

1. Data collection: tweets from @realDonaldTrump are collected for

analysis.

2. Sentiment analysis of tweets: each tweet is given a sentiment score on

the positive/negative axis.

3. Validation: the sentiment analysis scoring must be validated by ob-

servers: are human-identified positive or negative tweets correctly

identified by BOTUS?

4. Identification of the company in a tweet: is the tweet even about a

company? If so, which one?

5. Determining the trading universe: are there companies that should

be excluded from the bot’s trading algorithms?

6. Classifying tweets as “applicable” or “unapplicable”: is a tweet’s senti-

ment strong enough for BOTUS to engage the trading strategy?

7. Determining a trading strategy: how soon after a flagged tweet does

BOTUS buy a company’s stock, and how long does it hold it for?

8. Testing the trading strategy on past data: how would BOTUS have

fared from the U.S. Presidential Election to April 2017? What are

BOTUS’ limitations?

T3’s Trump and Dump uses a similar process (see Figure 27.1).

Data The data consists of:

tweets by @realDonaldTrump (from around Election Day 2016

through the end of March 2017 for BOTUS; no details are given for

T3) (see Figure 27.2 for sample);

a database of publicly traded companies, such as can be found

at [17, 18, 14], although which of these were used, if any, is not

specified (no explicit mention is made for BOTUS), and

stock market data for real-time pricing (Google Finance for T3) and

backcasting simulation (for BOTUS, source unknown).

It is not publicly known whether the 2 bots are upgrading their algorithms

by including new data as time passes.

27.1 Introduction 1707

Figure 27.1: T3’s Trump and Dump pro-

cess [42].

Strengths and Limitations of Algorithms and Procedure

In sentiment analysis, an algorithm analyzes documents in an

attempt to identify the attitude they express or the emotional

response they seek. It presents numerous challenges, mostly re-

lated to the richness and flexibility of human languages and their

syntax variations, the context-dependent meaning of words and

lexemes, the use of sarcasm and figures of speech, and the lack of

perfect inter-rater reliability among humans [35]. As it happens,

@realDonaldTrump is not much of an ironic tweeter – “sad” and

“great” are usually meant in their most general sense. This greatly

simplifies the analysis.

The bots have to learn to recognize whether a tweet is directed at

a publicly traded company or not. In certain cases, the ambiguity

can be resolved relatively easily with an appropriate training set

(Apple the company vs. apple the food-item, say), but no easy

solutions were found in others (Tiffany the company vs. Tiffany

the daughter, for example). Rather than have humans step in and

instruct BOTUS when it faces uncertainty (which would go against

the purpose of the exercise), a decision was made to exclude these

cases from the trading universe. The T3 documentation does not

describe such details.

1708 27 Text Analysis and Text Mining

Figure 27.2: Examples of @realDonaldTrump tweets involving Delta, Toyota Motor, L.L.Bean, Ford, and Boeing.

Once the bot knows how to rate @realDonaldTrump’s tweets and to

identify when he tweets about publicly-traded companies, the next

question is to determine what the trading strategy should be. If

the tweet’s sentiment is negative enough T3 shorts the company’s

stock.
1

Of course, this requires first purchasing the stock (so that it1: It sells the stock when the price is high,

that is, before the tweet has had the chance

to bring the stock down, and it repurchases

it once the price has been lowered by the

tweet, but before the stock has had the

chance to recover.

can be shorted). Planet Money’s decision was similar: buy once the

tweet is flagged, and sell right away... but what does “right away”

mean in this context? There is a risk involved: if the stock goes back

up before BOTUS has had a chance to purchase the low-priced stock,

it will lose money. To answer that question, Tradeworx simulated

the stock market over the last few months, introducing the tweets,

and trying out different trading strategies. It turns out that, in this

specific analysis, “right away” can be taken to be 30 minutes after

the tweet.

Results, Evaluation and Validation For a trading bot, the validation is

in the pudding, as they say – do they make money? T3’s president says

that their bot is profitable (they donate the proceeds to the ASPCA) [42]:

for instance, they netted a return of 4.47% on @realDonaldTrump’s Delta

tweet (see Figure 27.2); however, he declined to provide specific numbers

(and made vague statements about providing monthly reports, which I

have not been able to locate) [31].

27.1 Introduction 1709

The BOTUS process was more transparent, and we can point to Planet

Money’s transcript for a discussion on sentiment analysis validation

(comparing BOTUS’s sentiment rankings with those provided by human

observers, or running multiple simulations to determine the best trading

scenario) [15] – but it suffers from a serious impediment: as of roughly 4

months after going online, it still had not made a single trade [13]!

The reasons are varied (see Figures 27.3 and 27.4), but the most important

setback was that @realDonaldTrump had not made a single valid tweet

about a public company whose stock BOTUS could trade during the stock

market business hours. Undeterred, Planet Money relaxed its trading

strategy: if @realDonaldTrump tweets during off-hours, BOTUS will short

the stock at the market’s opening bell.

This is a risky approach, and so far it has not proven very effective: a

single trade of Facebook’s trade, on August 23rd, which resulted in a loss

of 0.30$ (see Figure 27.4).

Figure 27.3: BOTUS reporting on its trades (part 1).

Take-Aways As a text analysis and scenario analysis project, both

BOTUS and Trump & Dump are successful – they present well-executed

sentiment analyses, and a simulation process that finds an optimal trading

strategy. As predictive tools, they are sub-par (as far as we can tell), but

for reasons that (seem to) have little to do with data analysis per se.

1710 27 Text Analysis and Text Mining

Figure 27.4: BOTUS reporting on its trades (part 2).

Unfortunately, this is not an atypical feature of descriptive data anal-

ysis: we can explain what has happened (or what is happening), but

the modeling assumptions are not always applicable to the predictive

domain.

27.1.2 Text Analysis

It has been said that “the only valid model of the universe might just

be the universe itself” [author unknown]. With that maxim in mind, it

would appear that there is simply no substitute – in order to get meaning

out of documents, we first need to read them in their entirety.

This interpretation is overly simplistic, however. Consider the works of

William Shakespeare, for instance, to whom 38 plays (or so) and over 150

sonnets and poems written in the late 1600s and early 1700s have been

attributed [48]. It is fairly straightforward to have a go at Macbeth, say;

one only needs to pick up a printed or digital copy, or sit through any of

the numerous stagings of the Scottish play, and voilà! – instant meaning

and themes: ambition, lust for power, appearances vs. reality, temptation,

and guilt haunting evildoers [6].

Of course, current readers might find Early Modern English verses

difficult to follow without annotation, and those themes might only

27.1 Introduction 1711

reveal themselves upon repeated readings or viewings. Lovers of English

verse might fully enjoy this arduous process, but non-native speakers

might wonder if data analysis methods could provide a complete (or

near enough) Shakespeare experience without having to go through

The Complete Works of Shakespeare, or even The Complete Works of William
Shakespeare (Abridged) [7, 28]? Is there some “essential” Shakespeare-ness

that lurks in his plays and sonnets? Common threads, common humour,

common structure, common themes?

These questions (and others, such as authorship questions [10, 19, 49, 12])

may only be of interest to scholars, but there is a more compelling reason

to study automated text analysis, if only as a first pass – in the age of

“fake news” [30, 22, 29, 2], social media, and Amazon reviews, when

the tweets of high-profile politicians have a definite and measurable

influence on the stock market [13, 15, 16, 5, 33, 34] or when live analysis

of panic conversations can drive automated emergency responses [38],

we simply produce too much text data for any group of individuals to

analyze and understand without technological assistance.
2

2: In other words, the genie is out of the

bottle – what can we do to make sure we

understand what it’s really saying?

27.1.3 Text Mining vs. Natural Language Processing

Text mining is the collection of processes by which we can extract useful

insights from text. Inherent in this definition is the idea of automated data
reduction: useful insights (whether in the form of summaries, sentiment

analyses, or word counts) ought to be “smaller” and “more organized”

(from a data point of view) than the original text.

For short texts, however, the benefits of text analysis may not always

be evident. Consider, for instance, the following excerpt from a lawn

mowing instruction manual:

Before starting your mower inspect it carefully to ensure that

there are no loose parts and that it is in good working order.

This is a fairly concise and structured way to convey a message. It could

be further shortened and organized, perhaps, but it’s not clear that one

would gain much from the process. In more complex case, the process

is less obvious; we discussed data reduction in a more general context

previously and encourage readers of this chapter to first take a look at

Section 23.1 (Data Reduction for Insight).

Ted Kwartler suggests the following text mining workflow [26]:

1. problem definition and goals;

2. identify text to be collected;

3. text organization;

4. feature extraction;

5. analysis, and

6. reach an insight, conclusion, or output.

In this chapter, we will further take the position that text mining is

the application of data science and machine learning tasks to text
documents, such as:

supervised learning (classification and class probability estimation,

value estimation);

1712 27 Text Analysis and Text Mining

Figure 27.5: A poutine (on the left); an

abomination in the eyes of all right-

thinking sentient beings (on the right).

unsupervised learning (association rules and hypothesis discovery,

similarity matching, clustering);

semi-supervised learning (profiling, link prediction, data reduc-

tion, etc.), and

visualization and representation.

Typical applications include authorship questions (classification), senti-
ment analysis (value estimation), taxonomy creation and topic modeling
(clustering), text description, and text visualization.

3
3: In order to take full advantage of the

underlying data science machinery, docu-

ments may first need to be mapped into

numerical or categorical features, via ker-
nel transformations.

We will explore the data preparation process and simple text mining

models in Sections 27.2 and 27.3, respectively.

Natural language processing (NLP), in contrast, has a long history of lofty

goals, which more or less boil down to developing machines that react
“appropriately” while interacting with (natural) human languages.

4
4: Think of ChatGPT, as a recent example.

The focus of NLP tasks tends towards “understanding” languages; with

common tasks including:

syntax (lemmatization, part-of-speech tagging, parsing, terminol-

ogy extraction, sentence boundary disambiguation, stemming,

word segmentation, etc.);

semantics (machine translation, language generation, named entity

recognition, optical character recognition, questions and answers,

sentiment analysis, textual entailment, topic segmentation, word

sense disambiguation, etc.);

discourse (coreference resolution, discourse analysis, summariza-

tion, etc.), and

speech (recognition, segmentation, text-to-speech, etc.). [47]

Most natural human languages rules are dynamic, and usage may change

drastically in space and time – a poutine is not the same dish in New

Brunswick as it is in Québec, for instance (see Figure 27.5). For another

example, consider the meaning of the word awful, which drifted from

“commanding profound respect or reverential fear”

to

“frightful, very ugly, monstrous”

from 1000 AD onward.

Other issues arise from dialect variations and individual-specific speech

patterns, either due to linguistic drift, influence from other languages,

sarcasm, idioms, figures of speech, and so forth. The intended meaning is

often clear to experienced human speakers based on the specific context,

but it is believed that natural language understanding is AI-hard – a

27.2 Basics of Text Analysis 1713

Figure 27.6: Syntactic parsing of a sentence using the Stanford parser [41].

complete resolution of the issues would require the ability to make

computers as “smart” as humans [20], in ways that we haven’t seen from

our machines yet.
5

Thankfully, we rarely need a resolution at the most 5: Scratching the surface of large language

models shows how far we remain, in spite

of recent progresses.

general level; in many areas, the current state of the art produces results

which are acceptable to a large class of users.

Since the 1990s, the NLP community has adopted a machine learning

paradigm, which has provided advantages over the classical hard-coded

hand-produced rules. Statistical machine translation, for instance, can

take advantage of domain constraints and formal language habits to

reduce the space of outputs and produce accurate translations of technical

documents [45]. We will take a more detailed look at NLP concepts and

tasks in Chapter 32.

The distinction between text mining and NLP may seem spurious; most

researchers and practitioners do not get bogged down in such details.

When we focus on the data science side of the equation, we’ll refer to

text analysis as text mining; when we focus on language analysis and
understanding, we’ll refer to it as natural language processing.

27.2 Basics of Text Analysis

Let’s take a look at two schools of thought regarding text mining: semantic

parsing and bag-of-words mining.

Semantic Parsing In this view of text mining, word order and word

type play a crucial role. The idea is to use a large number of hand-parsed

sentences to train a model that outputs the most likely grammatical

analysis of a sentence. Words are tagged along a tree structure, and may

have multiple features. This information can then be used to extract

insights about the sentence or document.

For instance, consider the sentence

(S1) Dzingel added to the lead when he deflected Marc

Methot’s point shot 20 seconds later [37],

a syntactic parsing of which is shown in Figure 27.6.
6

6: The output of the Stanford parser [41].

1714 27 Text Analysis and Text Mining

Another display is provided below:

(ROOT

(S

(NP (NNP Dzingel))

(VP (VBD added)

(PP (TO to)

(NP (DT the) (NN lead)))

(SBAR

(WHADVP (WRB when))

(S

(NP (PRP he))

(VP (VBD deflected)

(NP

(NP (NNP Marc) (NNP Methot) (POS ’s))

(NN point) (NN shot))

(ADVP

(NP (CD 20) (NNS seconds))

(RB later))))))))

From the tree diagram, a human observer can clearly see that “Marc

Methot” is correctly parsed as a noun phrase (NP), that the “’s” is correctly

identified as a possessive marker (POS), and that “Marc Methot’s point

shot” is correctly shown as a NP (built from 2 singular proper nouns, NNP),

but the parser fails to recognize “point shot” as an NP.
7

7: The two displays are, of course, equiva-

lent. A computer program can be used to

easily go from one to the other; a human

with the right experience would find both

as insightful. But it’s certainly easier for a

neophyte to comprehend the tree diagram.

Why is that? Is it simply because we are a

visual species? Or because most of us have

parsed sentence fragments in our native

languages as youths?

In another parsing (using the Enju parser, see Figure 27.7), “Marc Methot’s

point shot 20 seconds later” is tagged as a simple declarative clause (S), but

“Marc Methot’s point” and “shot 20 seconds later” are wrongly identified

as a NP and a verb phrase (VP), respectively, underscoring the importance

of parsing to our understanding of a sentence.

The part-of-speech tagging for the sentence is shown in the table below:

Word Tag Word Tag
Dzingel NNP Marc NNP

added VBD Methot NNP

to TO ’s POS

the DT point NN

lead NN shot NN

when WRB 20 CD

he PRP seconds NNS

deflected VBD later RB

The meaning of common tags are provided in Tables 27.1 and 27.2. Notice

how relational insight between the parts-of-speech has gotten lost (or is

not displayed, at the very least).

The Stanford parser provides a list of universal dependencies:

nsubj(added-2, Dzingel-1)

root(ROOT-0, added-2)

case(lead-5, to-3)

det(lead-5, the-4)

nmod(added-2, lead-5)

27.2 Basics of Text Analysis 1715

advmod(deflected-8, when-6)

nsubj(deflected-8, he-7)

advcl(added-2, deflected-8)

compound(Methot-10, Marc-9)

nmod:poss(shot-13, Methot-10)

case(Methot-10, ’s-11)

compound(shot-13, point-12)

dobj(deflected-8, shot-13)

nummod(seconds-15, 20-14)

nmod:npmod(later-16, seconds-15)

advmod(deflected-8, later-16)

For instance, “he” (the 7th token in the sentence) is he nominal subject
(nsubj) of “deflected” (the 8th token), “point shot” is recognized as

a compound, and “shot” (the 13th token) is the direct object (dobj, the

second most core argument of a verb after the subject) of “deflected” (the

8th token). A list of codes and meanings for UD (v2) can be found in

Tables 27.3 and 27.4, on pp. 1718-1719.

Bag of Words In this view of text mining, only the words are important

– it is frequency (and relative frequency) that wins the day. In semantic

parsing, the words have attributes depending on their position and

role in the document’s sentences; in bag of words analysis, the words
themselves are attributes of the document. Our sentence S1 is simply a

collection of words, arranged here alphabetically:

’s, 20, added, deflected, Dzingel, he, later, lead, Marc, Methot,

point, seconds, shot, the, to, when.

The fact that “point shot” is a noun phrase is not significant, but the fact

that “point” and “shot” appear in the list is significant – it is the relative
frequencies of the terms that provide information about the document

or collection of documents (such as intent and themes).

In the rest of the section, we will take a look at the fundamental concepts

underlying text preparation.
8

Concrete illustrations of these notions are 8: Some of the topics will be revisited in

Chapter 32.
provided in Section 27.4.

27.2.1 Text Collection

Nowadays, text data is typically collected from the Web, either through

web scraping or with the help of a specialized application programming
interface (API), as we discussed in Chapter 16. Manual collection is

another option (although strongly discouraged when faced with more

than a few dozen documents to collect).

Optical character readers (OCR) can also digitize scanned images and the

technology has improved tremendously over the last 20 years; manual
entry of non-digital text data can be used as a last resort, but it is tedious

and likely to introduce infelicities and transcription errors.

1716 27 Text Analysis and Text Mining

Figure 27.7: Abridged syntactic parsing of a sentence using the Enju English parser [32].

27.2.2 Text Representation

No matter where data comes from and what analyses we hope to run on

it, the crucial first step requires extraction, formatting, and storage to a

data structure with appropriate numerical properties [39]:

a string or vector of characters, with language-specific encoding;

a collection of text documents (with meta information) called a

corpus (‘permanent’ when stored on disk; ‘volatile’ when held in

RAM);

a document-term matrix (DTM) – or the transposed term-document
matrix (TDM) – where the rows are the documents, the columns

are the terms (see Figure 27.8), and the entries represent some text

statistic;

a tidy text dataset containing one token (single word, 𝑛-gram,

sentence, paragraph) per row.

The DTM/TDM representations are essential to any statistical analysis

of text data – it is on these entities that machine learning algorithms are

unleashed.

27.2.3 Text Processing

As with every form of data, text data requires extensive cleaning and

processing. Cleaning text data is, to put it mildly, even less pleasant a

process than cleaning numeric or categorical data. There are challenges

due to the nature of the data: how would one go about finding anomalies

in the text? Outliers? Is the concept even definable for text data?

27.2 Basics of Text Analysis 1717

part-of-speech tagset

syntactic tagset

Table 27.1: Penn treebank tagset (part 1) [43].

Character encoding may also produces surprises: a text (or a part of text)

that looks completely normal to the human eye may be unreadable to a

computer because it was expecting a different encoding system. There

are probabilistic ways to detect a document’s encoding, and ways to

coerce a specified encoding – if you are working with text data and your

code balks at doing something it should be able to do and none of the

usual fixes apply, look into the encoding situation.

Another issue is that legitimate spelling mistakes and typographical
errors are hard to catch in large documents (even with spell-checkers), to

say nothing of:

accent representation (ya new cah’s wicked pissa!);
neologisms and portemanteaus (ruthfull; can’t you tell that I’m
planning prevenge?);

poor translations or foreign words (business goose; llongyfarchiadau);

puns and play-on-words (they were jung and easily freudened!);
specialized vocabulary (clopen; poset);
fictional names and places (Qo’noS; Kilgore Trout);
slang and curses (skengfire; #$&#!);
mark-up and tags (; \includegraphics);
uninformative text information (page number; ISBN blurb), etc.

1718 27 Text Analysis and Text Mining

functional tagset

pseudo-attachments tagset

disfluency annotations

Table 27.2: Penn treebank tagset (part 2) [43].

Table 27.3: The 37 universal syntactic relations used in Universal Dependencies v2. The upper part of the table follows the main organizing

principles of the UD taxonomy such that rows correspond to functional categories in relation to the head (core arguments of clausal

predicates, non-core dependents of clausal predicates, and dependents of nominals) while columns correspond to structural categories of

the dependent (nominals, clauses, modifier words, function words). The lower part of the table lists relations that are not dependency

relations in the narrow sense [44].

27.2 Basics of Text Analysis 1719

Code Relation
acl clausal modifier of noun (adjectival clause)

advcl adverbial clause modifier

advmod adverbial modifier

amod adjectival modifier

appos appositional modifier

aux auxiliary

case case marking

cc coordinating conjunction

ccomp clausal complement

clf classifier

compound compound

conj conjunct

cop copula

csubj clausal subject

dep unspecified dependency

det determiner

discourse discourse element

dislocated dislocated elements

expl expletive

fixed fixed multiword expression

flat flat multiword expression

goeswith goes with

iobj indirect object

list list

mark marker

nmod nominal modifier

nsubj nominal subject

nummod numeric modifier

obj object

obl oblique nominal

orphan orphan

parataxis parataxis

punct punctuation

reparandum overridden disfluency

root root

vocative vocative

xcomp open clausal complement

Table 27.4: Universal dependency relations, alphabetical listing [44].

The process can be simplified to some extent with the help of regular
expressions and text pre-processing functions (see Section 27.4):

Specific pre-processing steps will vary based on the project.

For example, the words used in tweets are vastly different

than those used in legal documents, so the cleaning process
can also be quite different [26].

We shall illustrate the pre-processing function with the help of the

following string:

<i>He</i> went to bed at 2 A.M. It\’s way too late! He was

only 20% asleep at first, but sleep eventually came.

What can we do with this string?

1720 27 Text Analysis and Text Mining

Figure 27.8: Term-document matrix/

document-term matrix for a hypotheti-

cal corpus, with Row Sums and Column

Sums.

Modify every upper case character to its corresponding lower case
version (avoid if seeking proper nouns and names)

<i>he</i> went to bed at 2 a.m. it\’s way too late! he

was only 20% asleep at first, but sleep eventually came.

Remove all punctuation marks (avoid if seeking emojis):

iHei went to bed at 2 AM Its way too late He was only

20 asleep at first but sleep eventually cam

Remove all numerals (not ideal when text mining quantities):

<i>He</i> went to bed at A.M. It\’s way too late! He

was only % asleep at first, but sleep eventually came.

Remove all extraneous white space:

<i>He</i> went to bed at 2 A.M. It\’s way too late! He

was only 20% asleep at first, but sleep eventually came.

Remove characters within brackets (and the brackets):

He went to bed at 2 A.M. It\’s way too late! He was

only 20% asleep at first, but sleep eventually came.

Replace all numerals with words:

<i>He</i> went to bed at two A.M. It\’s way too late!

He was only twenty% asleep at first, but sleep eventually

came.

Replace abbreviations:

<i>He</i> went to bed at 2 AM Itś way too late! He

was only 20% asleep at first, but sleep eventually came.

Replace contractions (avoid if seeking non-formal speech):

<i>He</i> went to bed at 2 A.M. It is way too late! He

was only 20% asleep at first, but sleep eventually came.

Replace symbols with words:

<i>He</i> went to bed at 2 A.M. Itś way too late! He

was only 20 percent asleep at first, but sleep eventually

came.

We typically also remove stop words (“a”, “an”, “the”, etc.) and unin-
formative words (which tend to be highly context-dependent), as these

unnecessarily increase the number of columns in the DTM.
9

We also9: See the curse of dimensionality, Chap-

ter 23.
usually stem words and complete the stems to remove unnecessary

variation in the text: “sleepful”, “sleeping”, “sleeps”, “slept” all convey

27.2 Basics of Text Analysis 1721

the meaning of “sleep” and might as well be replaced by the latter term

(which is a completed stem or a lemma).
10

10: But there are complications, as we will

discuss in Chapter 32: in “operations re-

search”, “operating system” and “oper-

ative dentistry”, the stem “operati” has

different meanings.

In the BoW approach, then, the text string on which we have been working

could be pre-processed to:

he go bed 2 am way late he 20 percent sleep first sleep

eventually come

Note that this is not the only reasonable BoW preparation – as always,

context matters.

27.2.4 Text Statistics

The problem of how to represent a corpus as BoW DTM is simple to

solve, but it requires analysts to make use of their agency.

Consider a corpus C= {𝑑1 , . . . , 𝑑𝑁 } consisting of 𝑁 documents, with a

BoW dictionary DC = 𝑡1 , . . . , 𝑡𝑀 consisting of 𝑀 distinct terms.
11

11: For 𝑖 = 1, . . . , 𝑁 , the 𝑖th document’s

dictionary DC;𝑖 = {𝑡𝑖;1 , . . . , 𝑡𝑖;𝑀𝑖
} con-

sists of the distinct terms of DC found

in 𝑑𝑖 .

For

instance, if the corpus is

C= {“the dogs who have been let out”, “who did that”, “my dogs breath smells like dogs food”)},

then𝑁 = 3, 𝑑1 = “the dogs who have been let out”, 𝑑2 = “who did that”,

and 𝑑3 = “my dogs breath smells like dogs food”, 𝑀1 = 7, 𝑀2 = 3,

𝑀3 = 7, 𝑀 = 14, and the BoW dictionary terms are:

𝑡1 = “been”,

𝑡2 = “breath”,

𝑡3 = “did”,

𝑡4 = “dogs”,

𝑡5 = “food”,

𝑡6 = “have”,

𝑡7 = “let”,

𝑡8 = “like”,

𝑡9 = “my”,

𝑡10 = “out”,

𝑡11 = “smells”,

𝑡12 = “that”,

𝑡13 = “the”, and

𝑡14 = “who”.

We could further pre-process the corpus (remove stopwords, stem the

words, etc.), but for the purposes of illustrating text statistics, we will

leave the documents as they are.

The purest bag of word information about a term 𝑡 in a document 𝑑 is

the raw term frequency count

tf 𝑡 ,𝑑 = # times 𝑡 occurs in 𝑑,

but its relative usefulness is impacted by the documents’ sizes.
12

12: And size variation among documents.

1722 27 Text Analysis and Text Mining

The relative term frequency (or term proportion)

tf ∗𝑡 ,𝑑 =
tf 𝑡 ,𝑑
𝑀𝑑

typically provides a more useful representation of the BoW.

At a simpler level, we could also look at the document frequency df 𝑡 ,
which is to say, the number of documents in which the term 𝑡 occurs. To

compare a term’s usage across different corpora, however, it might be

preferable to compute the relative document frequency

df ∗𝑡 =
df 𝑡
𝑁
.

This text statistic is only of limited usefulness if 𝑁 is “too small”.

Another approach is to use the term frequency-inverse document fre-
quency (tf-idf) of term 𝑡 in document 𝑑:

tf-idf ∗𝑡 ,𝑑 = −tf ∗𝑡 ,𝑑 × ln df ∗𝑡 .

This text statistic is a heuristic; although it has no solid theoretical

backing, it is nevertheless commonly-used.
13

13: Silge (an early backer of tf-idf) and

Schnoebelen suggest an alternative in the

form of weighted log odds , which can

also be used with non-text data.

The rationalization for its use is that if most of the documents contain the

term 𝑡, then df ∗𝑡 ≈ 1 and the presence of that term in a document does

not provide a lot of information about said document (since it shows up

in most documents):

tf-idf ∗𝑡 ,𝑑 ≈ −tf ∗𝑡 ,𝑑 × ln 1 = 0.

Furthermore, if the term 𝑡 does not occur often in a document 𝑑 for which

𝑀𝑑 is large, then tf ∗𝑡 ,𝑑 ≈ 0 and

tf-idf ∗𝑡 ,𝑑 ≈ −0 × ln df ∗𝑡 = 0.

In this BoW approach, it is the terms that appear relatively often only
in a small subset of documents (with large values) that are crucial to

understanding those documents in the general context of the corpus.

https://juliasilge.com/blog/introducing-tidylo/

27.2 Basics of Text Analysis 1723

27.2.5 Text Visualization

One of the major differences between text analysis and plain numerical

data analysis is that even though we are able to interpret numerical

results with some (often minimal) effort, we can easily interpret text

analysis results with no effort: we have a built-in semantics detector –

text is not just a label for data, it has meaning (derived from the context)

that is automatically available to us.
14

14: My son Llewellyn, upon learning how

to read, complained that he couldn’t help
but read text when he saw it – the blissful

ignorance of the past is forever gone.

In truth, we can train ourselves to read numerical data and results,

especially with the help of data visualizations (see Chapter 18 and [9],

for instance). Somewhat paradoxically, we can also visualize text data.

Common methods include barcharts, scatterplots, word clouds, and

phrase nets (see Figure 27.9 and Section 27.4).
15

15: These can be quite handy when con-

ducting a BoW analysis on a subject of

which the analysts know very little, or if

the text is in a language that they do not

master yet.

Figure 27.9: Examples of text visualiza-

tions: barchart (top left, from Section

27.4.1), scatterplot (top right, from Section

27.4.2), word cloud (from Section 27.4.3),

and phrase net (from Section 27.4.2).

1724 27 Text Analysis and Text Mining

27.3 Text Mining Tasks

“If the computer can successfully tell a joke as well as Henry

Youngman, then that’s the voice I want.” [Roger Ebert, TED

Talk, 2011]

We can easily leverage machine learning (ML) techniques to improve

the BoW (this section) and semantics (see Chapter 32) approaches to text

analysis.

We have seen that text usually enters the text analysis pipeline in un-
structured and unorganized formats, from a variety of sources. Through

pre-processing, text becomes clean (yet remains unstructured).

The BoW approach provides a framework for a structured numerical
representation of text data, either in the form of DTM/TDM or tidy data
(see Section 27.4 for examples of the latter). It is on these representations

that ML algorithms are unleashed.

At the ML stage, it is important to remember where the data comes from

and the context in which it applies. The text mining/NLP pipeline of

Figure 27.10 applies in most (if not all) text analysis situations.

Figure 27.10: Text mining and NLP pipeline [author unknown].

We have discussed document extraction in Chapter 16, feature extraction
in Chapter 23, and machine learning in Chapters 19–22.

27.3 Text Mining Tasks 1725

In supervised learning (SL), there is a target/response against which to

train and test the models; typical tasks include classification and class
probability estimation, regression and value estimation, etc.

In unsupervised learning (UL), there is no target; UL could be used to

discover potential target/response levels that could eventually be used

in SL tasks with new data, say; typical tasks include association rules
and hypothesis discovery, similarity matching and clustering, etc.

Other ML tasks include profiling, link prediction, and so on. In text

mining, the most commonly used ML tasks are classification and clus-
tering.

27.3.1 Classification

In classification, a sample set of data (the training set) is used to determine

rules (or a model) that can be used to divide the data into pre-determined
groups (also known as classes). The model is then validated by examining

its performance on a test set.

In text classification, the data must first be given a numerical represen-
tation (DTM/TDM/tidy data) – it is on this object that classifiers are

trained.

For instance, we may wish to answer questions such as:

Based on the terms that appear in a text, can we determine who its

author is likely to be?

Based on the words that appear in a news story, is it propaganda?

Is the email that was just received legitimate or malicious?

Should a city trigger its emergency response system based on social

media conversations?

What is a tweet’s main sentiment?

etc.

Text Classification Workflow In particular, the text classification pro-

cess should follow the regular classification pipeline, with the exception

of the conversion from text data to numerical representation:

1. data collection;

2. data pre-processing;

3. exploration and text visualization;

4. text representation;

5. training the model, and

6. testing and evaluation.

Notes and Comments Remember that in order to train and test a

classifier, the true labels have to be known for at least some of the data –

this might not be achieved easily.
16

16: It is usually quite costly to obtain these

labels, especially with large text or image

datasets.Classification is also affected by the No Free-Lunch Theorem stating,

in effect, that no single classifier is always the best option – we have to

consider a number of models, on a case-by-case basis.

1726 27 Text Analysis and Text Mining

In situations where at least one of the class labels occurs rarely in the

training data, the classifiers may be swamped by the frequent labels:

how would an e-mail spam filter handle a term it has never encountered

before? This hurdle is tricky to overcome, technically-speaking, especially

as rare occurrences are often more interesting and/or important in the

problem context.
17

17: We discuss these briefly in Section 21.3.

Since it is recommended that we try out different classifiers, how can we

determine if a model is preferable to another? The theory of performance
metrics is richer for binary classifiers than general classifiers: ideally, a

good model would have high rates of true positives and true negatives,

and low rates both of false positives and false negatives.
18

18: There are complications, as expected:

see Sections 19.4.4 and 21.1.2 for more de-

tails.

Multinomial naïve Bayes Classification We will showcase a classifica-

tion approach which has found quite a bit of success as an e-mail spam

filter.
19 Multinomial naïve Bayes is a classifier for which the feature19: It is a variant of the algorithm pre-

sented in Section 21.4.4. vectors in each class are assumed to have a multinomial distribution.

Consider a training set 𝑛 of email messages – the records. Each record

has ℓ features, the frequencies (or relative frequencies) of ℓ pre-selected

terms in the email message body. Each record can then be represented

by its signature x = (𝑥1 , . . . , 𝑥ℓ).

We assume that there are 𝐾 categories in which a record could be

classified.
20

Let {𝐶𝑘 | 𝑘 = 1, . . . , 𝐾} denote the categories.20: Perhaps the class labels are: spam,

quarantined, personal, business, etc.

For any incoming e-mail message, the classification problem is to deter-

mine the posterior distribution

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ)

for each label 𝑘. The predicted class of x is the class 𝐶𝑘 for which the

posterior is largest.

Fix 𝑘. From Bayes’ Theorem, we have

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ) ∝ 𝑃(x ∈ 𝐶𝑘) × 𝑃(𝑥1 , . . . , 𝑥ℓ | x ∈ 𝐶𝑘).

The naïve assumption is that

𝑃(𝑥1 , . . . , 𝑥ℓ | x ∈ 𝐶𝑘) = 𝑃(𝑥1 | x ∈ 𝐶𝑘) × · · · 𝑃(𝑥ℓ | x ∈ 𝐶𝑘),

so that

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ) ∝ 𝑃(x ∈ 𝐶𝑘) ×
ℓ∏
𝑖=1

𝑃(𝑥𝑖 | x ∈ 𝐶𝑘).

The multinomial assumption is that

𝑃(𝑥𝑖 | x ∈ 𝐶𝑘) = 𝑝
𝑥𝑖
𝑘,𝑖
,

where 𝑝𝑘,𝑖 ∈ [0, 1] for each feature (word) 1 ≤ 𝑖 ≤ ℓ .

Combining these assumptions, the posterior “probabilities” are then

𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ) ∝ 𝑃(x ∈ 𝐶𝑘) ×
ℓ∏
𝑖=1

𝑝
𝑥𝑖
𝑘,𝑖
.

27.3 Text Mining Tasks 1727

The model can be further linearized by taking logarithms on both sides:

log𝑃(x ∈ 𝐶𝑘 | 𝑥1 , . . . , 𝑥ℓ) ∝ 𝑏𝑘 +
ℓ∑
𝑖=1

𝑥𝑖 log 𝑝𝑘,𝑖 .

The classifier is trained by estimating the parameters 𝑝𝑘,𝑖 on a subset of

all records and by specifying the “priors” 𝑏𝑘 . The predicted class 𝐶(x) is

the 𝐶𝑘 for which 𝑏𝑘 +
∑ℓ
𝑖=1
𝑥𝑖 log 𝑝𝑘,𝑖 is maximized.

21
21: Recall that this classifier is not cali-
brated – the relative values of the posterior

“probabilities” have no intrinsic value in

and of themselves.

If a message encounters terms (tokens, words) that were not seen in the

training data, it is impossible to predict its most likely class membership

using (non-existent) past behaviour. In that case, to avoid divisions by 0,

we make use of the corrected estimate

�̂�𝑘,𝑖 =

∑
x∈𝐶𝑘

𝑥𝑖 + 1∑
x∈𝐶𝑘

(𝑥1 + · · · + 𝑥ℓ) + |𝑣 |
=

(#𝑤𝑖 ∈ 𝐶𝑘) + 1

𝑊𝑘 + |𝑣 | ,

where |𝑣 | is the size of the vocabulary, #𝑤𝑖 ∈ 𝐶𝑘 is the frequency of the

word 𝑤𝑘 in the training documents belonging to class 𝐶𝑘 , and𝑊𝑘 is the

count of all words appearing in training documents in class 𝐶𝑘 .

As an example, consider the training set and testing set below (raw and

processed), describing the sentiment (class: + or −) associated with 6

reviews for a specific phone.

For the priors of each class, we use the proportions of positive and

negative reviews in the training data. In the processed data, there are 8

distinct vocabulary terms, and there are 8 (resp. 5) terms in the positive

(resp. negative) reviews. The corrected estimates for the vocabulary word

“amazing” are computed below.

1728 27 Text Analysis and Text Mining

The corrected estimates for each vocabulary word in the training doc-

uments are shown below, as is the signature vector x for the lone test

record.

Simple computations show that

𝑃(+ | x)“ =′′
2.9 × 10

−6 < 𝑃(− | x) = 9.7 × 10
−6 ,

from which we conclude that the test review is negative.
22

22: Hopefully, that is not much of a sur-

prise in light of the original test review.

Of course, any classification algorithm may be used. Common methods

also include support vector machines and artificial neural networks (see

Chapter 21), not only multinomial naïve Bayes. We will have more to say

on the topic in Section 27.4.4.

27.3.2 Clustering

The aim of clustering is to divide the data into latent groups (also

known as clusters). Within a cluster, data points are seen as similar
to one another; between clusters, they are seen as dissimilar. As befits

the unsupervised learning nature of the task, the cluster labels are not
pre-determined.

For instance, we may wish to:

divide existing social media users into subgroups based on the

shared characteristics of their posts;

create (new) taxonomies on the fly, as new items are added to a

group of items to ease product navigation;

cluster terms within a corpus of document (topic modeling);

cluster documents within a corpus based on their use of terms;

identify keywords in a document;

etc.

Text Clustering Workflow The steps are quite similar to those of text

classification:

1. data collection;

2. data pre-processing;

3. exploration and text visualization;

4. text representation;

5. run multiple clustering algorithms with parameter variations, and

6. compare and validate the results.

27.3 Text Mining Tasks 1729

Notes and Comments Conceptually, clustering is relatively intuitive

for people: we recognize clusters when we see them.

But there are issues, chiefly:

there is no agreed-upon definition of what a cluster is;

there is no “magic” recipe to determine which similarity measure

to use;

the number of cluster is not usually specified, and

due to the non-deterministic nature of many clustering algorithms,

the results are often unreplicable.

And what does it mean to cluster text data? With a DTM text represen-

tation, we can cluster the documents with respect to the terms, which

is to say that we look for documents that have similar term signatures.

With a TDM text representation, we can cluster the terms with respect to
the documents, which is to say that we look for terms that have similar
document signatures.

We will have more to say on the topic in Section 27.4.5.

27.3.3 Sentiment Analysis

Most of us have a good native understanding of the emotional intent of

words, which leads us to infer surprise, disgust, joy, pain, and so on

from a text segment.
23

When applied by machines to a block of text, 23: Although sarcasm or lies are not al-

ways obvious without other contextual

cues.

the (somewhat subjective) process of identifying emotions is known as

sentiment analysis (or opinion mining).

Typical sentiment questions could include:

Is this movie review positive or negative?

Is this customer email a complaint?

How have newspapers’ attitudes about the PM changed since the

election?

etc.

Most humans would typically be able to answer these questions when

presented with the appropriate text documentation, but there is no

guarantee that each individual’s reading of the situation would be the

same. For text processing machines (even modern LLMs), questions of

this nature may be quite difficult to answer.

Challenges Data analysis is not easy, in general, but sentiment analysis

is even more complicated, as:

the topic may change halfway through the text;

the author may be using rhetorical devices ;

we do not always agree on the emotional content of text (due

to cultural context, or lack of familiarity with the language, or

different political affiliations, etc.);

words may have different meanings/emotional values depending

on the context (stolen goods may be hot, in which case we would

want nothing to do with them; a new song may be hot, in which

case we would probably stream it right away);

https://www.merriam-webster.com/grammar/rhetorical-devices-list-examples

1730 27 Text Analysis and Text Mining

qualifiers can drastically change a term’s emotional value (note

the emotional difference between he was really happy today vs.

he was not really happy today, which may only differ in one term,

but has a completely different meaning), etc.

Sentiment analysis is a supervised learning problem, requiring dictio-

naries of emotional content to have been compiled ahead of time or

sentiment labels to have been assigned to a training text dataset.
24

The24: Related tasks include:

discarding subjective information

(information extraction);

recognizing opinion-oriented

questions (question answering);

accounting for multiple view-

points (summarization);

identifying suitability of videos for

kids;

identifying bias in news sources;

identifying appropriate content for

ad placement, etc.

following reviews were taken from Amazon: there is a 5−star, a 3−star,

and a 1−star review – but which is which?

Review 1: "Love the jeans, price, fit, but even more, love the

suppliers. Simple concerns were not only answered immedi-

ately, they went beyond any expectations I had! Will definitely

be buying through this supplier, highly recommended!"

Review 2: "DON’T BUY. Great series aside, this special addi-

tion is pathetic. They’re basically mass-market paperbacks:

small and uncomfortable to hold. The regular paperback

versions are far superior for basically the same price."

Review 3: "Beginning the second use, the bowl keeps falling

out 30 seconds after the mixing starts. A bit disappointed."

This is how the AIPlaybook at a16z.com/ai saw the situation in 2021:

https://a16z.com/ai/

27.3 Text Mining Tasks 1731

There is a fair amount of variation, both within and across reviews. What

would a modern tool like GPT make of these?

Patrick: Good evening, GPT. I am going to post three

product reviews. One is a 5-star review, one is a 3-star

review, and one is a 1-star review. I would like you to tell

me which review matches with which score.

GPT: Absolutely, that sounds like an interesting exercise!

Go ahead and post the three reviews, and I’ll do my best

to match each review with the correct star rating.

Review 1: "Love the jeans, [...]"

Review 2: "DON’T BUY. [...]"

Review 3: "Beginning [...]"

Based on the content and tone of each review, here’s how

I would match them with their respective star ratings.

Review 1: This review is overwhelmingly positive, empha-

sizing satisfaction with both the product (jeans) and the

supplier’s customer service. The reviewer mentions loving

the product and having their expectations exceeded, and

they even recommend the supplier. This review aligns

with a 5-star rating.

Review 3: This review expresses disappointment, but it’s

not entirely negative. The reviewer seems to have had a

specific issue with the product (a bowl falling out during

use). However, they don’t express complete dissatisfaction

or advise against purchasing the product. This seems more

in line with a 3-star rating – not completely dissatisfied,

but not fully satisfied either.

1732 27 Text Analysis and Text Mining

Review 2: This review is clearly negative. The reviewer

strongly advises against purchasing the product, using

phrases like "DON’T BUY" and describing the product as

"pathetic." They also compare it unfavorably to another

version, suggesting the other is a better choice. This tone

and content are indicative of a 1-star rating.

Let me know if you agree with these assessments!

Thank you, I think that this is indeed what intelligent

agents would conclude.

For the sake of completeness, I should mention that Review

1 was the 5-star review; Review 2, the 3-star review, and

Review 3, the 1-star review. There is nothing you could

have done differently to obtain these results... humans are

not always logical when it comes to rating things.

Thank you for sharing the actual ratings, and you’re ab-

solutely right! Human reviews can be quite subjective

and not always follow a logical pattern. People’s rating

criteria can vary greatly, and what might be a minor in-

convenience to one person could be a major drawback to

another. It’s an interesting reminder of the diversity in

human experiences and expectations.

Perhaps GPT’s ratings were skewed because it was told that one of the

reviews was a 5-star review, and so on. What if we prompt it differently,

in a new conversation? As it turns out, GPT comes to the same conclusion,

as we can see below.

Patrick: Good evening, GPT. I am going to provide you

with 3 product reviews. I would like for you to rate them,

on a scale from 1 (poor) to 5 (great).

GPT: Sure, I’d be happy to help with that. Please go ahead

and share the three product reviews, and I’ll rate each of

them on a scale from 1 to 5 based on their content.

Review 1: "Love the jeans, [...]"

Review 2: "DON’T BUY. [...]"

Review 3: "Beginning [...]"

27.3 Text Mining Tasks 1733

Based on the content of each review, here are the ratings I

would assign.

Review 1: This review is very positive. The customer

expresses satisfaction with multiple aspects of the product

(jeans) and exceptional satisfaction with the supplier’s

customer service. The enthusiasm and recommendation

suggest a high level of satisfaction. I would rate this as a 5
(great).

Review 2: This review is highly negative. The customer

advises against purchasing the product and describes it as

"pathetic," indicating significant dissatisfaction. The com-

parison with a superior version of the product emphasizes

their disappointment. I would rate this as a 1 (poor).

Review 3: This review expresses a specific problem and

disappointment, but it doesn’t completely condemn the

product. It seems like a moderate level of dissatisfaction,

possibly due to a single but significant issue. I would

rate this as a 3 (average), assuming the problem is not

widespread or indicative of overall poor quality.

These ratings are based on the tone and content of the

reviews, reflecting the customers’ levels of satisfaction or

dissatisfaction with their purchases.

Thank you!

Term-by-Term and Document-by-Document Sentiment Analysis In

this chapter, we differentiate 2 types of sentiment analyses:

term-by-term (TBT) sentiment analysis looks at the emotional

content of individual tokens (terms in the text) and deduces an

emotional score for passages containing them;

document-by-document (dbd) sentiment analysis looks at scored
passages and tries to find tokens which carry the emotional load
to predict how a new passage would score on some emotional

spectrum.
25

25: Note that these terms are not widely-

used in the analyst community.

TBT is not a complicated technical task: it only requires the ability to

match a lexicon score to each term, and to add the scores; DBD is basically

a classification problem.

Sentiment Lexicons TBT sentiment analysis relies heavily on lexicons,

which is to say, lists of terms which have been ranked (by experts) on

some emotional scale. Commonly-used lexicons include:

AFINN: words are ranked on a scale from -5 (negative) to 5

(positive);

BING: words are given a binary score (negative/positive);

NRC: words are assigned category(ies) of sentiments;

LOUGHRAN: words are placed in categorical bins.

1734 27 Text Analysis and Text Mining

"abandon"

AFINN: -2

BING: NA

NRC: fear, negative, sadness

LOUGHRAN: negative

"bad"

AFINN: -3

BING: negative

NRC: anger, disgust, fear, etc.

LOUGHRAN: negative

"not"

AFINN: NA

BING: NA

NRC: NA

LOUGHRAN: NA

"egregious"

AFINN: ?

BING: ?

NRC: ?

LOUGHRAN: ?

What’s the best lexicon to use? As always, context matters. Is there any

reason to expect the various lexicons to give the same scores? Each of

these lexicons contains a majority of negative terms (keeping in mind

that most words in the English language are neutral), so there could at

least be some correlation.

Once a lexicon has been selected, TBT is simply a matter of chunking
the text and computing sentiment scores on each block (every 100 words,

every 100 lines, every chapter, etc.). Does the sectioning approach matter?

Again, context matters.

We provide examples of TBT and DBD in Sections 27.4.6 and 27.4.8.

For a more in-depth discussion on text mining and natural language

processing, interested readers are advised to also consult Chapter 32 and

[40, 39, 24, 3, 1, 25, 8].

27.4 Examples

Various concepts of text analysis and text mining are illustrated using R

and Python in the following examples, some of which are inspired by

the excellent [39] and [26].

27.4.1 NHL Game Recaps

In this example, we introduce the basic notions of text mining using

the tm (text mining) and qdap (quantitative discourse analysis package)

libraries in R.

The main dataset we work with is the text content of Associated Press

game recaps involving the Ottawa Senators during the 2016-2017 NHL

season.
26

26: All of this section’s datasets are

available at github.com/potrbollvy/Data-

Training .

Initializing the Environment

install.packages("tm")

install.packages("qdap")

https://github.com/potrbollvy/Data-Training
https://github.com/potrbollvy/Data-Training

27.4 Examples 1735

Preliminaries

We start with a simple example to showcase the possibilities.

new_text <- "The Ottawa Senators have the Atlantic Division lead in their sights. Mark

Stone had a goal and four assists, Derick Brassard scored twice in the third period and

the Senators recovered after blowing a two-goal lead to beat the Toronto Maple Leafs 6-3

on Saturday night. The Senators pulled within two points of Montreal for first place in

the Atlantic Division with three games in hand. We like where we’re at. We’re in a good

spot, Stone said. But there’s a little bit more that we want. Obviously, there’s teams

coming and we want to try and create separation, so the only way to do that is keep

winning hockey games. Ottawa led 2-0 after one period but trailed 3-2 in the third

before getting a tying goal from Mike Hoffman and a power-play goal from Brassard. Stone

and Brassard added empty-netters, and Chris Wideman and Ryan Dzingel also scored for the

Senators. Ottawa has won four of five overall and three of four against the Leafs this

season. Craig Anderson stopped 34 shots. Morgan Rielly, Nazem Kadri and William Nylander

scored and Auston Matthews had two assists for the Maple Leafs. Frederik Andersen allowed

four goals on 40 shots. Toronto has lost eight of 11 and entered the night with a tenuous

grip on the final wild-card spot in the Eastern Conference. The reality is we’re all big

boys, we can read the standings. You’ve got to win hockey games, Babcock said. After

Nylander made it 3-2 with a power-play goal 2:04 into the third, Hoffman tied it by rifling

a shot from the right faceoff circle off the post and in. On a power play 54 seconds later,

Andersen stopped Erik Karlsson’s point shot, but Brassard jumped on the rebound and put

it in for a 4-3 lead. Wideman started the scoring in the first, firing a point shot

through traffic moments after Stone beat Nikita Zaitsev for a puck behind the Leafs goal.

Dzingel added to the lead when he deflected Marc Methot’s point shot 20 seconds later.

Andersen stopped three shots during a lengthy 5-on-3 during the second period, and the

Leafs got on the board about three minutes later. Rielly scored with 5:22 left in the

second by chasing down a wide shot from Matthews, carrying it to the point and shooting

through a crowd in front. About three minutes later, Zaitsev fired a shot from the right

point that sneaked through Anderson’s pads and slid behind the net. Kadri chased it down

and banked it off Dzingel’s helmet and in for his 24th goal of the season. Dzingel had

fallen in the crease trying to prevent Kadri from stuffing the rebound in. Our game plan

didn’t change for the third period, and that’s just the maturity we’re gaining over time,

Senators coach Guy Boucher said. Our leaders have been doing a great job, but collectively,

the team has grown dramatically in terms of having poise, executing under pressure. Game

notes: Mitch Marner sat out for Toronto with an upper-body injury. Marner leads Toronto

with 48 points and is also expected to sit Sunday night against Carolina."

We find the 20 most frequent terms using qdap’s term_count().

(term_count <- qdap::freq_terms(new_text,20))

WORD FREQ WORD FREQ WORD FREQ WORD FREQ

1 the 38 9 goal 6 17 three 5 25 scored 4

2 and 21 10 it 6 18 after 4 26 stone 4

3 a 18 11 of 6 19 brassard 4 27 third 4

4 in 16 12 shot 6 20 but 4 28 toronto 4

5 for 8 13 with 6 21 four 4 29 we 4

6 to 8 14 leafs 5 22 later 4 30 we’re 4

7 on 7 15 point 5 23 lead 4

8 from 6 16 senators 5 24 period 4

1736 27 Text Analysis and Text Mining

There are more than 20 entries because of ties (at 4 occurrences apiece).

This information can also be displayed as a chart.

plot(term_count)

Sens Recaps Data

We now import the data for all games during the season.

recaps <- read.csv(file="Recap_data.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)

nrow(recaps)

str(recaps)

[1] 101

’data.frame’: 101 obs. of 34 variables:

$ GP : int 1 2 3 4 5 6 7 8 9 10 ...

$ X0_Type : chr "1_Regular" "1_Regular" "1_Regular" "1_Regular" ...

$ Date : chr "10/12/2016" "10/15/2016" "10/17/2016" "10/18/2016" ...

$ Time : chr "7:00 PM" "7:00 PM" "7:30 PM" "7:30 PM" ...

$ X : chr "" "" "A" "" ...

$ Opponent : chr "Toronto Maple Leafs" "Montreal Canadiens" "Detroit Red Wings" ...

$ GF : int 5 4 1 7 1 3 2 2 2 1 ...

$ GA : int 4 3 5 4 4 0 5 0 1 0 ...

$ Result : chr "W" "W" "L" "W" ...

$ OT_SO : chr "OT" "SO" "" "" ...

27.4 Examples 1737

$ W_Record : int 1 2 2 3 3 4 4 5 6 7 ...

$ L_Record : int 0 0 1 1 2 2 3 3 3 3 ...

$ OL_Record : int 0 0 0 0 0 0 0 0 0 0 ...

$ Streak : chr "W 1" "W 2" "L 1" "W 1" ...

$ OTT_S : int 30 38 32 42 28 28 33 22 32 24 ...

$ OTT_PIM : int 13 10 22 14 8 2 4 11 13 20 ...

$ OTT_PPG : int 0 0 0 1 0 0 2 0 0 0 ...

$ OTT_PPO : int 2 4 3 2 3 1 4 2 2 4 ...

$ OTT_SHO : int 0 0 1 1 0 0 0 0 0 0 ...

$ OPP_S : int 38 24 25 35 35 22 19 37 33 27 ...

$ OPP_PIM : int 11 10 20 6 6 2 8 9 11 22 ...

$ OPP_PPG : int 0 1 2 1 2 0 0 0 0 0 ...

$ OPP_PPO : int 4 4 4 5 4 1 2 4 3 2 ...

$ OPP_SHG : int 0 0 0 0 0 0 0 0 0 0 ...

$ ATT : chr "17,618" "18,195" "20,027" "11,061" ...

$ LOG : chr "2:36" "2:44" "2:33" "2:43" ...

$ AP_Headline : chr "Maple Leafs\xcd Matthews has modern record" ...

$ AP_Recap : chr "Auston Matthews needed 40 minutes to get into"| __truncated__ ...

$ SSS_Author : chr "Ross A" "Ary M" "Michaela Schreiter" "Ary M" ...

$ SSS_Headline: chr "Auston Matthews Loses 5-4 to Sens in OT" ...

$ SSS_Recap : chr "The NHL.com headline for the game was \xd2Auston Matthews scores"| __truncated__ ...

$ OPP_Blog : chr "Pension Plan Puppet" "Eyes on the Prize" ...

$ OPP_Title : chr "Sens 5, Auston Matthews 4 (OT)" ...

$ OPP_Recap : chr "The first period started exactly the way that Leafs’ fans wanted"| __truncated__ ...

It is child’s play to isolate the text from individual game recaps.

AP.recaps <- recaps$AP_Recap

head(AP.recaps,2)

’Auston Matthews needed 40 minutes to get into the NHL record book. In the highest-scoring debut

in modern NHL history, Matthews scored four goals for the Toronto Maple Leafs, but Kyle Turris

scored 37 seconds into overtime to give the Ottawa Senators to a 5-4 victory Wednesday night.

Matthews got his fourth with 3 seconds left in the second period, bringing his mother to

tears in the stands. He called it a \xf1surreal\xee moment, adding that \xf1I couldn\xcdt

believe that was happening out there.\xee [...] UP NEXT Maple Leafs: Host Boston on Saturday

night for their home opener. Senators: Host Montreal on Saturday night.’

’Guy Boucher trusted his instincts when selecting skaters for the shootout and it paid off for the

Ottawa Senators. The Senators\’ head coach opted to go with defenseman Erik Karlsson and the

captain scored the game winner to give Ottawa a 4-3 victory over the Montreal Canadiens on Saturday

night to open the season with back-to-back wins. \’\’Sometimes it\’s just small things and you

follow a gut feeling,\’\’ Boucher said. [...]’

There are odd characters in the game recaps (xf1, xee, etc.), which

highlight some issue with text encoding and formatting. We revisit the

last few steps with a slightly different data file.

recaps <- read.csv(file="Recap_data_first_pass.csv", header=TRUE,

sep=",", stringsAsFactors=FALSE)

AP.recaps <- recaps$AP.recaps

head(AP.recaps,2)

1738 27 Text Analysis and Text Mining

’Auston Matthews needed 40 minutes to get into the NHL record book. In the highest-scoring debut

in modern NHL history, Matthews scored four goals for the Toronto Maple Leafs, but Kyle Turris

scored 37 seconds into overtime to give the Ottawa Senators to a 5-4 victory Wednesday night.

Matthews got his fourth with 3 seconds left in the second period, bringing his mother to tears

in the stands. He called it a "surreal" moment, adding that "I couldn\’t believe that was

happening out there." [...]’

‘Guy Boucher trusted his instincts when selecting skaters for the shootout and it paid off for the

Ottawa Senators. The Senators\’ head coach opted to go with defenseman Erik Karlsson and the captain

scored the game winner to give Ottawa a 4-3 victory over the Montreal Canadiens on Saturday night

to open the season with back-to-back wins. "Sometimes it\’s just small things and you follow a gut

feeling," Boucher said. [...]’

The results are easier to read, for sure, but for reasons that are too

technical to get into here, the encoding of Recap_data_first_pass.csv

creates issues with tm and qdap down the road, but the issues disappear

when we use a different encoding (UTF-8).

recaps <- read.csv(file="Recap_data_first_pass_utf8.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

AP.recaps <- recaps$AP.recaps

VCorpus from Vector with tm

The tm package makes it easy to work with vector sources and volatile

corpora. For instance, we can make a vector source as follows.

AP.recaps.source <- tm::VectorSource(AP.recaps)

This vector source can be converted to a volatile corpus.

AP.recaps.corpus <- tm::VCorpus(AP.recaps.source)

At a fundamental level, the volatile corpus contains the following infor-

mation.

AP.recaps.corpus

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 101

This is not entirely useful, to be honest, although we do recover the 101

games played by the Senators during the season. Let’s say we wanted

more details on the 15th game.

AP.recaps.corpus[[15]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 2871

27.4 Examples 1739

There are two entries in the list; the first is the game recap text.

AP.recaps.corpus[[15]][1]

$content = ’For a team playing its third game in four nights, the Minnesota Wild looked plenty

fresh on Sunday night -- even in overtime. Matt Dumba scored late in the extra session and

Darcy Kuemper stopped 35 shots, helping Minnesota beat the Ottawa Senators 2-1. The Wild [...]’

The entry’s metadata can be queried as follows.

AP.recaps.corpus[[15]][2]

$meta

author : character(0)

datetimestamp: 2019-09-15 13:29:16

description : character(0)

heading : character(0)

id : 15

language : en

origin : character(0)

We can also take a look at some basic statistics regarding the number of
characters and the number of words in the game recaps.

length_of_recaps_char <- vector(mode="numeric", length=nrow(recaps))

for(j in 1:nrow(recaps)){

length_of_recaps_char[j]=nchar(AP.recaps.corpus[[j]][1])

}

hist(length_of_recaps_char, freq=F,

main="Distribution of # of characters in Senators game recaps (16-17)")

summary(length_of_recaps_char)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2027 3223 3689 3683 4227 5087

1740 27 Text Analysis and Text Mining

length_of_recaps_word <- vector(mode="numeric", length=nrow(recaps))

for(j in 1:nrow(recaps)){

length_of_recaps_word[j]=length(strsplit(gsub(’ {2,}’,’ ’,

AP.recaps.corpus[[j]][1]),’ ’)[[1]])

}

hist(length_of_recaps_word, freq=F,

main="Distribution of # of words in Senators game recaps (16-17)")

summary(length_of_recaps_word)

Min. 1st Qu. Median Mean 3rd Qu. Max.

375 565 665 664 774 921

Pre-Processing a Document with tm

To get the most of this corpus, we must first transform it into a bag-of-
words (BoW). We first show how to implement the various text processing

functionalities on the text string used in Section 27.2.3.

(text <- "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20%

asleep at first, but sleep eventually came.")

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

All characters can be converted to lower case with the tolower() func-

tion.

tolower(text)

[1] "<i>he</i> went to bed at 2 a.m. it\’s way too late! he was only 20% asleep at first,

but sleep eventually came."

The output of the following three tm functions should be clear from their

name.

27.4 Examples 1741

tm::removePunctuation(text)

[1] "iHei went to bed at 2 AM Its way too late He was only 20 asleep at first

but sleep eventually came"

tm::removeNumbers(text)

[1] "<i>He</i> went to bed at A.M. It\’s way too late! He was only % asleep at first,

but sleep eventually came."

tm::stripWhitespace(text)

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

Pre-Processing a Document with qdap

Some of the more sophisticated processes are implemente in qdap. The

functionality should be clear from the function’s name (as well as its

output).
27

27: Note that all of these also strip unnec-

essary spaces in the string.

Remove text within brackets

qdap::bracketX(text)

Replace numbers with words

qdap::replace_number(text)

Replace abbreviations

qdap::replace_abbreviation(text)

Replace contractions

qdap::replace_contraction(text)

Replace symbols with words

qdap::replace_symbol(text)

[1] "He went to bed at 2 A.M. It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at two A.M. It\’s way too late! He was only twenty% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 AM It\’s way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 A.M. it is way too late! He was only 20% asleep at first,

but sleep eventually came."

[1] "<i>He</i> went to bed at 2 A.M. It\’s way too late! He was only 20 percent asleep at first,

but sleep eventually came."

1742 27 Text Analysis and Text Mining

Stopwords

Stopwords are those words that do not carry semantic content, partly

because they occur too frequently to really be “seen” by speakers/readers,

such as the “said” tag in a novel. They are often removed from the text

prior to BoW analysis.

List standard English stop words

tm::stopwords("en")

Print text without standard stop words

tm::removeWords(text,tm::stopwords("en"))

[1] "<>He</> went bed 2 A.M. It’s way late! He 20% asleep first,

sleep eventually came."

Of course, stopwords may vary from one context to the next,
28

and it is28: Or from one language to the next.

possible to add or subtract words fromt he stopwords list.

Add "sleep" and "asleep" to the list: new_stops

new_stops <- c("sleep","asleep",tm::stopwords("en"))

Remove stop words from text

tm::removeWords(text,new_stops)

[1] "<>He</> went bed 2 A.M. It’s way late! He 20% first, eventually came."

Putting it All Together

We can combine some pre-processing steps into one call (there are, of

course multiple ways to do this) – note that the order of implementation

matters: a different order may very well lead to a different outcome.

tolower(

tm::stripWhitespace(

tm::removeWords(

tm::removePunctuation(

qdap::replace_symbol(

qdap::replace_contraction(

qdap::replace_abbreviation(

qdap::bracketX(text)

)

)

)

)

,tm::stopwords("en"))

)

)

[1] "he went bed 2 am way late he 20 percent asleep first sleep eventually came"

27.4 Examples 1743

Word Stemming and Stem Completion

Stemming is also implemented in tm.

Create sleep

(sleep <- c("sleepful","sleeps","sleeping"))

Perform word stemming: stem_doc

(stem_doc <- tm::stemDocument(sleep))

[1] "sleepful" "sleeps" "sleeping"

[1] "sleep" "sleep" "sleep"

Create the completion dictionary: sleep_dict

sleep_dict <- c("sleep")

Perform stem completion: complete_text

(complete_text <- tm::stemCompletion(stem_doc,sleep_dict))

sleep sleep sleep

"sleep" "sleep" "sleep"

For illustrative purposes, let us take a quick look at a string with more

substance.

text_data <- "In sleepful nights, Katia sleeps to achieve sleeping."

comp_dict <- c("In","sleep","nights","Katia","to","achieve")

Remove punctuation

rm_punc <- tm::removePunctuation(text_data)

Create character vector

n_char_vec <- unlist(strsplit(rm_punc, split = ’ ’))

Perform word stemming: stem_doc

(stem_doc <- tm::stemDocument(n_char_vec))

Re-complete stemmed document: complete_doc

(complete_doc <- tm::stemCompletion(stem_doc,comp_dict))

[1] "In" "sleep" "night" "Katia" "sleep" "to" "achiev" "sleep"

In sleep night Katia sleep to achiev sleep

"In" "sleep" "nights" "Katia" "sleep" "to" "achieve" "sleep"

Notice the slight difference between the stemmed string and the com-

pleted string.

1744 27 Text Analysis and Text Mining

Pre-Processing a Corpus

In practice, we never work with a single string or with a single document;

how would we pre-process an entire corpus of text documents? The

function tm_map maps the processing step to all documents in the corpus;

if the processing function is not implemented in the package tm, it must

be wrapped by the content_transformer.

As an example, consider the following customized pre-processing cleaner,

which mixes base, tm and qdap functions.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en")))

return(corpus)

}

We apply it to the Sens game recaps corpus AP.recaps.corpus.

clean_corp.AP.recaps <- clean_corpus(AP.recaps.corpus)

As an example, let’s print the cleaned up recap for game 15 (compare

with the raw text obtained previously).

clean_corp.AP.recaps[[15]][1]

$content = ’team play third game four night minnesota wild look plenti fresh sunday night

even overtim matt dumba score late extra session darci kuemper stop shot help minnesota

beat ottawa senat wild come loss philadelphia saturday beat pittsburgh thursday end

world play backtoback thought held good job wild coach bruce boudreau said ryan suter

score shorthand goal first period kuemper help wild kill three earli power play team [...]’

It is obviously not a proper English document, but the “meaning” can be

gleamed fairly easily.
29

One important thing to keep in mind: there is no29: In no small part, due to the size of

the document; with too few terms, it can

be harder to make sense of the processed

text.

secret pre-processing formula that will work with all corpora. Context

remains king/queen.

We can revisit the first game recap we considered (game 56), and look at

the new word counts. Originally, the eight most frequent terms (“the”,

“and”, “a”, “in”, “for”, “to”, “on”, “from”) were English stopwords; what

are the most frequent terms in the cleaned up corpus?

term_count <- freq_terms(clean_corp.AP.recaps[[56]][1],20)

plot(term_count)

27.4 Examples 1745

Document-Term and Term-Document Matrices

The DTM and TDM can also be obtained from tm; we show how to create

them from the clean game recaps corpus, starting with the DTM.

(AP.recaps_dtm <- tm::DocumentTermMatrix(clean_corp.AP.recaps))

<<DocumentTermMatrix (documents: 101, terms: 3293)>>

Non-/sparse entries: 22187/310406

Sparsity : 93%

Maximal term length: 15

Weighting : term frequency (tf)

Next, we convert AP.recaps_dtm to a matrix.

AP.recaps_m <- as.matrix(AP.recaps_dtm)

dim(AP.recaps_m)

[1] 101 3293

We can review a portion of the matrix (keep in mind that the default text

statistic is the term frequency 𝑡 𝑓).

1746 27 Text Analysis and Text Mining

AP.recaps_m[79:84, 1005:1010]

Terms

Docs ferland fewer fibula field fifth fifthround

79 0 0 0 0 1 0

80 0 0 0 0 0 0

81 0 0 0 0 0 0

82 0 0 0 0 0 0

83 0 0 0 0 0 0

84 0 0 0 0 0 0

We can do the same thing for the TDM.

(AP.recaps_tdm <- tm::TermDocumentMatrix(clean_corp.AP.recaps))

AP.recaps_m <- as.matrix(AP.recaps_tdm)

dim(AP.recaps_m)

AP.recaps_m[1005:1010, 79:84]

<<TermDocumentMatrix (terms: 3293, documents: 101)>>

Non-/sparse entries: 22187/310406

Sparsity : 93%

Maximal term length: 15

Weighting : term frequency (tf)

[1] 3293 101

Docs

Terms 79 80 81 82 83 84

ferland 0 0 0 0 0 0

fewer 0 0 0 0 0 0

fibula 0 0 0 0 0 0

field 0 0 0 0 0 0

fifth 1 0 0 0 0 0

fifthround 0 0 0 0 0 0

Barchart of Frequent Terms with tm

These objects can be used to provide a BoW interpretation of the Senators’

2016-2017 season (regular season and playoffs).

We start by computing how often the terms appear in the entire cor-

pus.

term_frequency <- rowSums(AP.recaps_m)

Next, we sort the term frequencies in descending order.

term_frequency <- sort(term_frequency, decreasing=TRUE)

The top 20 most common words in the cleaned corpus are shown below

(should we expect ties, as was the case when we looked at a single game

recap?).

27.4 Examples 1747

term_frequency[1:20]

game score period anderson

843 497 370 237

senat said just third

720 493 277 233

goal second night get

584 417 257 230

play first two made

512 402 240 218

ottawa shot season point

502 398 238 200

We can plot a barchart of the 20 most common words, or a word cloud of

the (at most) 100 most common words.

barplot(term_frequency[1:20], col = "tan", las = 2)

word_freqs = data.frame(term_frequency)

word_freqs$term = rownames(word_freqs)

word_freqs = word_freqs[,c(2,1)]

colnames(word_freqs)=c("term","num")

wordcloud::wordcloud(word_freqs$term, word_freqs$num, max.words=100, colors="red")

In practice, we already know that the corpus’ documents are Ottawa

Senators hockey game recaps, so we can remove frequent terms that do

not add a lot of information due to the context.

clean_corpus_Sens <- function(corpus){

corpus <- tm::tm_map(corpus, content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

1748 27 Text Analysis and Text Mining

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en"), "game", "first",

"second", "third", "Ottawa", "Senators"))

return(corpus)

}

clean_corp2.AP.recaps <- clean_corpus_Sens(AP.recaps.corpus)

AP.recaps2_tdm <- tm::TermDocumentMatrix(clean_corp2.AP.recaps)

AP.recaps2_m <- as.matrix(AP.recaps2_tdm)

term_frequency2 <- rowSums(AP.recaps2_m)

term_frequency2 <- sort(term_frequency2, decreasing=TRUE)

barplot(term_frequency2[1:20], col = "tan", las = 2)

word_freqs2 = data.frame(term_frequency2)

word_freqs2$term = rownames(word_freqs2)

word_freqs2 = word_freqs2[,c(2,1)]

colnames(word_freqs2)=c("term","num")

wordcloud::wordcloud(word_freqs2$term, word_freqs2$num, max.words=100, colors="red")

Do we get a better sense for how the season went? Assuming that you

knew nothing about how things played out, would you be able to “predict”

how close to winning the Stanley Cup the team came?

Finally, we will try to see if the recaps can help us determine the key

players in the Senators’ season.

keep=c("anderson","borowiecki","boucher","brassard","burrows","ceci","chabot","chiasson",

"claesson","condon","didomenico","drieger","hammond","hoffman","jokipakka","karlsson",

"lazar","macarthur","mccormick","methot","moore","pageau","phaneuf","puempel","pyatt",

"ryan","ryans","smith","stalberg","stone","white","wideman","wingels")

27.4 Examples 1749

word_freqs3 = word_freqs2[word_freqs2$term %in% keep,]

barplot(term_frequency2[word_freqs2$term %in% keep], col = "tan", las = 2)

wordcloud::wordcloud(word_freqs3$term, word_freqs3$num, max.words=100, colors="red")

The beauty of the BoW approach is that even without any knowledge of

the sport, it is rather straightforward to determine the players/personnel

who were instrumental to the team’s success that year.

27.4.2 Shakespeare vs. Marlowe

In this example, we introduce the basics of tidy text mining using the

tidytext library in R, which shares syntax with H. Wickham’s popular

tidyverse suite of packages, which includes ggplot2, a powerful graphic

library (see Chapter 1 and [9, ch. 13]).

Following [39], we will work with:

a selection of Shakespeare’s plays,

a selection of Christopher Marlowe’s play, and

the Sens game recaps we work with in the preceding example.

The tidytext format (as do the other tidy formats) rely on the program-

ming concept of pipelines.

The Pipeline Operator |>

(This section is a repeat of Section 1.4.1)

R is a functional language, which means that it uses nested parentheses,

which can make code difficult to read. The pipeline operator |> (for-

merly %>%) and the dplyr package can be used to remedy the situation.

Wickham
30

provided an example to illustrate how it works: 30: See [46] for everything there is to know

about pipelines and tidy data.

1750 27 Text Analysis and Text Mining

hourly_delay <- filter(

summarise(

group_by(

filter(

flights,

!is.na(dep_delay)

),

date, hour

),

delay = mean(dep_delay),

n = n()

),

n > 10

)

Without necessarily knowing how each of the internal functions works,

we can still get a sense for what the overall nested structure does, and

realize (albeit, with a fair amount of work) that the basic object on which

we operate is the flights data frame.

The pipeline operator |> removes the need for nesting function calls, in

favor of passing data from one function to the next:

library(dplyr)

hourly_delay <- flights |>

filter(!is.na(dep_delay)) |>

group_by(date, hour) |>

summarise(delay = mean(dep_delay),n = n()) |>

filter(n > 10)

It is now obvious that the flights data frame is the base object, for instance

– the gap between pseudo-code and “code that runs” is significantly

reduced. The beauty of this approach is that the block of code can now

be ‘read’ directly: the flights data frame is

1. filtered (to remove missing values of the dep_delay variable);

2. grouped by hours within days;

3. the mean delay is calculated within groups, and

4. the mean delay is returned for those hours with more than n >

10 flights.

The pipeline rules are simple – the object immediately to the left of the

pipeline is passed as the first argument to the function immediately to

its right:

data |> function is equivalent to function(data)

data |> function(arg=value) is equivalent to function(data,

arg=value)

For instance:

library(dplyr)

swiss |> summary()

27.4 Examples 1751

Fertility Agriculture Examination Education

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00

Median :70.40 Median :54.10 Median :16.00 Median : 8.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00

Catholic Infant.Mortality threshold

Min. : 2.150 Min. :10.80 Min. :0.0000

1st Qu.: 5.195 1st Qu.:18.15 1st Qu.:1.0000

Median : 15.140 Median :20.00 Median :1.0000

Mean : 41.144 Mean :19.94 Mean :0.9362

3rd Qu.: 93.125 3rd Qu.:21.70 3rd Qu.:1.0000

Max. :100.000 Max. :26.60 Max. :1.0000

Themagrittrvignette provides additional information on themagrittr

package, on which dplyr is based.

Tidy Text Structure

Tidy data has specific structure:
31

31: See 1.4 for more information.

each column represents a unique variable;

each row represents a unique observation;

each table represents a unique type of observational unit.

Tidy text is a table with one token (single word, 𝑛−gram, sentence, para-

graph) per row, assuming that words have been tokenized to commonly-

used units of text.

As an example, consider the following haiku by master Matsuo Basho.

haiku <- c(’In the twilight rain’,

’these brilliant-hued hibiscus -’,

’A lovely sunset’)

haiku

[1] "In the twilight rain" "these brilliant-hued hibiscus -"

[3] "A lovely sunset"

We turn it into a data frame.

(haiku.df <- data.frame(text=haiku,

stringsAsFactors = FALSE))

text

1 In the twilight rain

2 these brilliant-hued hibiscus -

3 A lovely sunset

In the data.frame() call above, the last parameter is important as we

want to be able to separate the text into constituents tokens (words). We

can unnest the tokens of the haiku as follows.

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

1752 27 Text Analysis and Text Mining

library(tidytext)

haiku.df |> unnest_tokens(word,text)

word

1 in

2 the

3 twilight

4 rain

5 these

6 brilliant

7 hued

8 hibiscus

9 a

10 lovely

11 sunset

The tidytext function unnest_token() separates the tokens (words, in

this example), strips away the punctuation, and converts to lowercase.

Tidy Text Flow

In the tidy text framework, we generally:

1. start with text data;

2. unnest the tokens to produce the first iteration of tidy text;

3. clean the tidy text as required;

4. summarize the tidy text into a first iteration of summarized text;

5. clean and analyze the summarized text, and

6. visualize and present the text mining results.

Tidy Text Analysis

We illustrate the flow with the help of some of Shakespeare’s plays,

available at the Gutenberg Project (Project ID – Romeo and Juliet: 1112;

Hamlet: 1524; Macbeth: 2264; A Midsummer Night’s Dream: 2242, etc.).

library(gutenbergr)

will_shakespeare <- gutenberg_download(c(1790,2240,2242,

2243,2246,2250,2251,2253,2262,

2264,2267,2268,23042,23046))

head(will_shakespeare,20)

A tibble: 20 x 2

gutenberg_id text

<int> <chr>

1 1790 "***"

2 1790 "THIS EBOOK WAS ONE OF PROJECT GUTENBERG’S EARLY FILES PRODUCED AT A"

3 1790 "TIME WHEN PROOFING METHODS AND TOOLS WERE NOT WELL DEVELOPED. THERE"

4 1790 "IS AN IMPROVED EDITION OF THIS TITLE WHICH MAY BE VIEWED AS EBOOK"

5 1790 "(#1528) at https://www.gutenberg.org/ebooks/1528"

6 1790 "***"

http://www.gutenberg.org/ebooks/search/?query=Shakespeare

27.4 Examples 1753

7 1790 ""

8 1790 ""

9 1790 "Troilus and Cressida, World Library edition, several typos fixed."

10 1790 ""

11 1790 "This Etext file is presented by Project Gutenberg, in"

12 1790 "cooperation with World Library, Inc., from their Library of the"

13 1790 "Future and Shakespeare CDROMS. Project Gutenberg often releases"

14 1790 "Etexts that are NOT placed in the Public Domain!!"

15 1790 ""

16 1790 "*This Etext has certain copyright implications you should read!*"

17 1790 ""

18 1790 "<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM"

19 1790 "SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC., AND IS"

20 1790 "PROVIDED BY PROJECT GUTENBERG WITH PERMISSION. ELECTRONIC AND"

Not the most stirring literature, to be sure. We now produce (and clean)

the corresponding tidy text dataset.

library(stringr) # necessary to use str_extract

tidy_ws <- will_shakespeare |>

unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |> # removing stray punctuation, etc.

dplyr::anti_join(stop_words) |> # removing the heading business

na.omit() # removing NAs

head(tidy_ws)

A tibble: 6 x 2

gutenberg_id word

<int> <chr>

1 1790 ebook

2 1790 project

3 1790 gutenberg’s

4 1790 files

5 1790 produced

6 1790 time

We can easily produce a word count for this data frame.

library(ggplot2)

tidy_ws |> dplyr::count(word, sort=TRUE)

tidy_ws |> dplyr::count(word, sort=TRUE) |>

dplyr::filter(n > 500) |>

dplyr::mutate(word=reorder(word,n)) |>

ggplot(aes(word,n)) +

geom_col() +

xlab("Frequent words in selected Shakespeare plays") +

ylab("Word count") +

coord_flip()

1754 27 Text Analysis and Text Mining

A tibble: 20,297 x 2

word n

<chr> <int>

1 thou 2014

2 haue 1718

3 thy 1311

4 thee 1185

5 enter 1030

6 lord 999

7 hath 717

8 king 703

9 sir 700

10 loue 593

... with 20,287 more rows

Shakespeare and Marlowe

We can do the same for Christopher Marlowe, a contemporary of Shake-

speare.

kit_marlowe <-gutenberg_download(c(901,1094,1496,1589,

16169,18781,20288))

tidy_km <- kit_marlowe |> unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |>

dplyr::anti_join(stop_words) |>

na.omit() # remove NAs

head(tidy_km)

27.4 Examples 1755

A tibble: 6 x 2

gutenberg_id word

<int> <chr>

1 901 jew

2 901 malta

3 901 christopher

4 901 marlowe

5 901 edited

6 901 rev

Next, we look at both of these datasets simultaneously. In order to do so,

we build a word count data set with the help of the pipeline operator.

One of its advantages is that we can build the query sequentially and

easily see the output at various stages.

We start by binding tidy_ws and tidy_km into a single data frame.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe"))

head(word_count)

tail(word_count)

A tibble: 6 x 3

gutenberg_id word author

<int> <chr> <chr>

1 1790 ebook WillShakespeare

2 1790 project WillShakespeare

3 1790 gutenberg’s WillShakespeare

4 1790 files WillShakespeare

5 1790 produced WillShakespeare

6 1790 time WillShakespeare

A tibble: 6 x 3

gutenberg_id word author

<int> <chr> <chr>

1 20288 mine KitMarlowe

2 20288 eyes KitMarlowe

3 20288 witness KitMarlowe

4 20288 grief KitMarlowe

5 20288 innocency KitMarlowe

6 20288 exeunt KitMarlowe

Next, we execute a word count for each of the authors (note the sorting

of the outputs, and the new field n).

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author)

head(word_count)

tail(word_count)

1756 27 Text Analysis and Text Mining

A tibble: 6 x 3

Groups: author [1]

author word n

<chr> <chr> <int>

1 KitMarlowe abandon 3

2 KitMarlowe abandon’d 1

3 KitMarlowe abandons 1

4 KitMarlowe abate 2

5 KitMarlowe abated 1

6 KitMarlowe abb 1

A tibble: 6 x 3

Groups: author [1]

author word n

<chr> <chr> <int>

1 WillShakespeare zeal 2

2 WillShakespeare zeale 9

3 WillShakespeare zeales 1

4 WillShakespeare zealous 1

5 WillShakespeare zenith 1

6 WillShakespeare zip 1

In order to use the tidy approach, we need word_count to have a unique

value for each word for each author. Note that the size of each of the author

datasets is different, as we are using a higher number of Shakespeare

plays. Rather than look at raw counts (which would naturally favour the

Bard’s output), we consider proportions:

number of occurrences of a specific term in an author’s dataset

total number of terms in an author’s dataset

.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n))

head(word_count)

tail(word_count)

A tibble: 6 x 4

Groups: author [1]

author word n proportion

<chr> <chr> <int> <dbl>

1 KitMarlowe abandon 3 0.0000513

2 KitMarlowe abandon’d 1 0.0000171

3 KitMarlowe abandons 1 0.0000171

4 KitMarlowe abate 2 0.0000342

5 KitMarlowe abated 1 0.0000171

6 KitMarlowe abb 1 0.0000171

A tibble: 6 x 4

Groups: author [1]

author word n proportion

27.4 Examples 1757

<chr> <chr> <int> <dbl>

1 WillShakespeare zeal 2 0.0000136

2 WillShakespeare zeale 9 0.0000611

3 WillShakespeare zeales 1 0.00000679

4 WillShakespeare zealous 1 0.00000679

5 WillShakespeare zenith 1 0.00000679

6 WillShakespeare zip 1 0.00000679

We can now remove the raw counts and focus solely on the proportions.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n))

word_count

A tibble: 31,489 x 3

Groups: author [2]

author word proportion

<chr> <chr> <dbl>

1 KitMarlowe abandon 0.0000513

2 KitMarlowe abandon’d 0.0000171

3 KitMarlowe abandons 0.0000171

4 KitMarlowe abate 0.0000342

5 KitMarlowe abated 0.0000171

6 KitMarlowe abb 0.0000171

...

31484 WillShakespeare zeal 0.0000136

31485 WillShakespeare zeale 0.0000611

31486 WillShakespeare zeales 0.00000679

31487 WillShakespeare zealous 0.00000679

31488 WillShakespeare zenith 0.00000679

31489 WillShakespeare zip 0.00000679

Next, we reshape word_count to facilitate the analysis: each word is now

represented by a row, and the proportion of the time it appears in each

author’s writings is shown in the corresponding column.

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n)) |>

tidyr::spread(author,proportion)

word_count

A tibble: 25,020 x 3

word KitMarlowe WillShakespeare

<chr> <dbl> <dbl>

1 a’kin NA 0.00000679

2 a’th NA 0.0000814

1758 27 Text Analysis and Text Mining

3 a’that NA 0.00000679

4 abandon 0.0000513 0.0000136

5 abandon’d 0.0000171 0.0000136

6 abandons 0.0000171 NA

7 abash’d NA 0.00000679

8 abate 0.0000342 0.0000475

9 abated 0.0000171 NA

10 abates NA 0.00000679

... with 25,010 more rows

We can easily see what proportion of each author’s output is not found

in the other’s.

% of Shakespeare’s output terms not in Marlowe’s

(WS_nKM <- sum(word_count$WillShakespeare[is.na(word_count$KitMarlowe)]))

% of Marlowe’s output terms not in Shakespeare’s

(KM_nWS <- sum(word_count$KitMarlowe[is.na(word_count$WillShakespeare)]))

[1] 0.3092499

[1] 0.2497649

Do these proportions seem high, given that they were contemporaries?

Finally, we re-organize the table for use with ggplot() (strictly-speaking,

this step is not mandatory, but the charts we produce will look nicer).

word_count <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_km,author="KitMarlowe")) |>

dplyr::count(author,word) |> dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |> dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘WillShakespeare‘)

Here is a logarithmic scale scatterplot of word usage by both authors (for

words that were used by both).

library(scales)

ggplot(word_count, aes(x = proportion, y = ‘KitMarlowe‘,

color = abs(‘KitMarlowe‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "red", high = "gray75") +

theme(legend.position="none") +

labs(y = "Kit Marlowe", x = "Will Shakespeare")

Warning messages:

1: Removed 24363 rows containing missing values

(geom_point).

2: Removed 24205 rows containing missing values

(geom_text).

27.4 Examples 1759

Words near the straight line are used with roughly the same frequency

by both authors. For instance: “king”, “thou”, and “thy” in the high-

frequency spectrum, and “angry”, “alas”, and “behold” in the low-

frequency spectrum.

Words away from the straight line are used more frequently by one of the

authors: “lady” and “achilles” seem to be used relatively more often by

Shakespeare than by Marlowe, while “aeneas” is in the opposite situation

(these terms are specific to plays).

The colour is related to the (real) distance between the relative frequencies

of a term for each author (red is near, gray is far) – the logarithmic scales

of both axes explain the shape of the red cloud (large at the bottom, thin

at the top).
32

32: Do you see why this needs to be the

case?

Note the presence of “armes”, “arms”, and “armed”, or of “love” and

“loue” – what does that tell us about the text (and the English used)?

Should we be surprised about the prevalence of terms like “enter”, “exit”,

and “exeunt”?

1760 27 Text Analysis and Text Mining

Finally, let’s see if we can quantify the similarity in word usage.

cor.test(data = word_count, ~ proportion + ‘KitMarlowe‘)

Pearson’s product-moment correlation

data: proportion and KitMarlowe

t = 89.335, df = 6467, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7321162 0.7539396

sample estimates:

cor

0.7432256

There’s a fairly strong correlation (0.74) between the relative term fre-

quencies for the two wordsmiths (among those terms which are found

in both text outputs – recall KM_nWS and WS_nKM). That should not be

entirely unexpected, since they were contemporaries: one would naïvely

predict that the depth of their vocabulary and the way they deployed it

would be linked, to some extent.

But without comparisons to other texts, it is difficult to really put this

value in perspective.

Shakespeare and Sens Game Recaps

Let’s see how Shakespeare and Marlowe compare to a modern body of

work, the NHL Senators’ game recaps from the previous section.

recaps <- read.csv(file="Recap_data.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)

AP.recaps <- recaps$AP_Recap

recaps.df <- data.frame(text=AP.recaps, stringsAsFactors = FALSE)

tidy_AP <- recaps.df |>

tidytext::unnest_tokens(word,text) |>

dplyr::mutate(word = str_extract(word,"[a-z’]+")) |>

dplyr::anti_join(stop_words) |>

na.omit() # remove NAs

head(tidy_AP) # inspect

word_count_2 <- dplyr::bind_rows(dplyr::mutate(tidy_ws,author="WillShakespeare"),

dplyr::mutate(tidy_AP,author="AP_recaps")) |>

dplyr::count(author,word) |>

dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |>

dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘WillShakespeare‘)

27.4 Examples 1761

word_count_3 <- dplyr::bind_rows(dplyr::mutate(tidy_km,author="KitMarlowe"),

dplyr::mutate(tidy_AP,author="AP_recaps")) |>

dplyr::count(author,word) |>

dplyr::group_by(author) |>

dplyr::mutate(proportion = n / sum(n)) |>

dplyr::select(-c(n)) |>

tidyr::spread(author,proportion) |>

tidyr::gather(author, proportion, ‘KitMarlowe‘)

ggplot(word_count_2, aes(x = proportion, y = ‘AP_recaps‘,

color = abs(‘AP_recaps‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "blue", high = "gray75") +

theme(legend.position="none") +

labs(y = "AP Recaps", x = "Will Shakespeare")

ggplot(word_count_3, aes(x = proportion, y = ‘AP_recaps‘,

color = abs(‘AP_recaps‘ - proportion))) +

geom_abline(color = "gray40", lty = 2) +

geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +

geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +

scale_x_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_y_log10(labels = percent_format(),limits=c(0.0001,0.02)) +

scale_color_gradient(limits = c(0, 0.001), low = "green", high = "gray75") +

theme(legend.position="none") +

labs(y = "AP Recaps", x = "Kit Marlowe")

We can see the proportion of terms not found in the other corpora.

% of Shakespeare’s terms not in the game recaps

(WS_nAP <- sum(word_count_2$proportion[is.na(word_count_2$AP_recaps)]))

1762 27 Text Analysis and Text Mining

% of game recaps’ terms not in the selected Shakespeare plays

(AP_nWS <- sum(word_count_2$AP_recaps[is.na(word_count_2$proportion)]))

% of Shakespeare’s terms not in the game recaps

(KM_nAP <- sum(word_count_3$proportion[is.na(word_count_3$AP_recaps)]))

% of game recaps’ terms not in the selected Marlowe plays

(AP_nKM <- sum(word_count_3$AP_recaps[is.na(word_count_3$proportion)]))

[1] 0.8026031

[1] 0.4804179

[1] 0.7732845

[1] 0.5588203

The proportions are much higher than when comparing Marlowe’s and

Shakespeare’s outputs. In light of the differences in terms of topics,

style, and linguistic drift over the centuries, should any of these be

surprising?

The corresponding correlations are shown below.

cor.test(data = word_count_2, ~ proportion + ‘AP_recaps‘)

cor.test(data = word_count_3, ~ proportion + ‘AP_recaps‘)

Pearson’s product-moment correlation

data: proportion and AP_recaps

t = 2.8059, df = 1377, p-value = 0.005089

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.02270094 0.12767835

sample estimates:

cor

0.07539856

Pearson’s product-moment correlation

data: proportion and AP_recaps

t = 1.2599, df = 1142, p-value = 0.208

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.02074664 0.09501030

sample estimates:

cor

0.03725681

Again, it should come as no surprise that the recap writers do not use

English in the same BoW way that Shakespeare and Marlowe did.

It would be interesting to see if these results are stable under a different

subset of Shakespeare and Marlowe plays.

27.4 Examples 1763

𝑛−Grams

Up to this point, we have been using word, term, token, unit interchange-

ably when analyzing text, as befits the BoW approach.

It’s not too difficult to think of applications where the basic numerical

unit is not the relative frequency (or tf-idf) of single words, however, but

the links between 2 or more words, in succession or in co-occurrence.

Rather than tokenize some text by words, we can tokenize it by series of

𝑛 consecutive words (also called 𝑛−grams).

In what follows, we focus on 𝑛 = 2. Are there interesting bigrams in Shake-

speare’s plays? What would we expect his common bigrams to be?

tidy_ws.2 <- will_shakespeare |>

tidytext::unnest_tokens(bigram,text,token="ngrams",n=2) |>

dplyr::mutate(bigram = stringr::str_extract(bigram,"[0-9a-zA-Z’\]+")) |>

dplyr::count(bigram,sort=TRUE) |>

na.omit() # produce a count and sort on decreasing frequency

tidy_ws.2

A tibble: 143,344 x 2

bigram n

<chr> <int>

1 i am 671

2 in the 636

3 my lord 604

4 i will 584

5 of the 581

6 to the 528

7 i haue 517

8 it is 424

9 that i 319

10 and the 305

11 to be 304

12 and i 287

13 is the 284

14 i would 256

15 of my 253

16 i know 244

17 i do 240

18 you are 234

19 if you 222

20 is not 220

... with 143,324 more rows

There are a lot more bigrams than there were individual terms, which

makes sense from a combinatorial perspective. At first glance, among

the top 10 most frequent bigrams, only one conveys even a sliver of

information: “my lord”. Everything else is stopword material.

However, what about the 11th most frequent bigram? In a general context,

“to be” is a stopword bigram – but there is at least a few specific instance

1764 27 Text Analysis and Text Mining

in the Shakespearean context where that specific bigram is emphatically

not just a "stopword".
33

33: “To be, or not to be, that is the ques-

tion:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous for-

tune,

Or to take Arms against a Sea of troubles,

And by opposing end them: to die, to sleep

No more; and by a sleep, to say we end

The heart-ache, and the thousand natural

shocks

That Flesh is heir to?

a − Hamlet (Act 3, Scene 1)

Removing bigram stopwords is simple, although not as straigthforward

as in the unigram case:

1. split the two members of the bigrams into 2 columns;

2. verify if each, separately, is a regular stopword, and

3. remove the bigrams for which one of the components is a stopword.

For the sake of this exercise, let’s also remove words related to the printing

business, and theatre terms.

word = c("gutenberg","shakespeare","","etext","1990","1993","public","print","copies"

,"membership","commercial","commercially","electronic","download","distribution"

,"ff","f1","f2","f3","f4","NA","collier","ms","cap","txt","zip"

,"library","printed", "text","editions"

,"executive", "pobox", "fees", "million", "ascii", "legal", "61825", "2782"

,"director", "machine","readable","carnegie","mellon","university"

,"exit", "exeunt", "enter", "scene", "act", "folio", "dramatis"

,"mine","tis", "thine","thy", "thou","art","hast", "shalt","dost","thee"

,"act_4","act_1","act_2","act_3","act_5","sc_1","sc_2","sc_3","sc_4","sc_5"

,"sc_6","sc_7","sc_8","sc_9","sc_10","sc_11")

lexicon = rep("modern",length(word)) # let’s call it the modern lexicon

addition = data.frame(word,lexicon)

stop_words_ws = rbind(stop_words,addition)

tidy_ws.2_cleaned <- tidy_ws.2 |>

tidyr::separate(bigram, c("FirstTerm","SecondTerm"), sep=" ") |>

dplyr::filter(!FirstTerm %in% stop_words_ws$word) |>

dplyr::filter(!SecondTerm %in% stop_words_ws$word)

tidy_ws.2_cleaned <- tidy_ws.2_cleaned[!is.na(tidy_ws.2_cleaned$FirstTerm) &

!is.na(tidy_ws.2_cleaned$SecondTerm),]

tidy_ws.2_cleaned <- tidy_ws.2_cleaned |>

tidyr::unite(bigram,FirstTerm,SecondTerm, sep=" ")

tidy_ws.2_cleaned

A tibble: 31,721 x 2

bigram n

<chr> <int>

1 haue beene 32

2 sir iohn 30

3 ha ha 27

4 om pope 27

5 anon conj 23

6 haue heard 23

7 haue lost 22

8 haue seene 22

9 noble lord 21

10 hath beene 17

... with 31,711 more rows

Other bigram and 𝑛−gram ideas can be found in Section 27.5.

27.4 Examples 1765

27.4.3 The Play’s the Thing

In this section, we will take a more in-depth look at text visualizations,

which play a role just as important in text analysis as visualizations do

in numerical data science. We are somewhat hampered by the lack of

numerical values, but there are workarounds.

We will work with a set of Shakespearean plays, categorized into come-
dies, tragedies, and histories. We will use the tm and qdap libraries in R,

among others.

Loading the Data

We start by loading the data into three corpora.

corpus_C <- tm::Corpus(tm::DirSource("ShakespeareComedies/"),

readerControl=list(language="lat"))

corpus_T <- tm::Corpus(tm::DirSource("ShakespeareTragedies/"),

readerControl=list(language="lat"))

corpus_H <- tm::Corpus(tm::DirSource("ShakespeareHistories/"),

readerControl=list(language="lat"))

summary(corpus_C)

summary(corpus_T)

summary(corpus_H)

corpus C

Length Class Mode

A_Midsummer_Nights_Dream_first_pass.txt 2 PlainTextDocument list

Alls_Well_That_Ends_Well_first_pass.txt 2 PlainTextDocument list

As_You_Like_It_first_pass.txt 2 PlainTextDocument list

Cymbeline_first_pass.txt 2 PlainTextDocument list

Loves_Labours_Lost_first_pass.txt 2 PlainTextDocument list

Measure_for_Measure_first_pass.txt 2 PlainTextDocument list

Much_Ado_About_Nothing_first_pass.txt 2 PlainTextDocument list

Pericles_Prince_of_Tyre_first_pass.txt 2 PlainTextDocument list

Taming_of_the_Shrew_first_pass.txt 2 PlainTextDocument list

The_Comedy_of_Errors_first_pass.txt 2 PlainTextDocument list

The_Merchant_of_Venice_first_pass.txt 2 PlainTextDocument list

The_Merry_Wives_of_Windsor_first_pass.txt 2 PlainTextDocument list

The_Tempest_first_pass.txt 2 PlainTextDocument list

Troilus_and_Cressida_first_pass.txt 2 PlainTextDocument list

Twelfth_Night_first_pass.txt 2 PlainTextDocument list

Two_Gentlemen_of_Verona_first_pass.txt 2 PlainTextDocument list

Winters_Tale_first_pass.txt 2 PlainTextDocument list

corpus_T

Length Class Mode

Antony_and_Cleopatra_first_pass.txt 2 PlainTextDocument list

Coriolanus_first_pass.txt 2 PlainTextDocument list

Hamlet_first_pass.txt 2 PlainTextDocument list

Julius_Caesar_first_pass.txt 2 PlainTextDocument list

King_Lear_second_pass.txt 2 PlainTextDocument list

Macbeth_first_pass.txt 2 PlainTextDocument list

1766 27 Text Analysis and Text Mining

Othello_first_pass.txt 2 PlainTextDocument list

Romeo_and_Juliet_first_pass.txt 2 PlainTextDocument list

Timon_of_Athens_first_pass.txt 2 PlainTextDocument list

Titus_Andronicus_first_pass.txt 2 PlainTextDocument list

corpus_H

Length Class Mode

Henry_IV_part_1_first_pass.txt 2 PlainTextDocument list

Henry_IV_part_2_first_pass.txt 2 PlainTextDocument list

Henry_V_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_1_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_2_first_pass.txt 2 PlainTextDocument list

Henry_VI_part_3_first_pass.txt 2 PlainTextDocument list

Henry_VIII_first_pass.txt 2 PlainTextDocument list

King_John_first_pass.txt 2 PlainTextDocument list

Richard_II_first_pass.txt 2 PlainTextDocument list

Richard_III_first_pass.txt 2 PlainTextDocument list

Cleaning the Data

Next, we build a cleaning function for the text and apply it to each corpus.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument, language="english")

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords,

c(tm::stopwords("english"),

c("I", "and", "the", "that", "thou", "thee", "thi", "â")))

return(corpus)

}

clean_C = clean_corpus(corpus_C)

clean_T = clean_corpus(corpus_T)

clean_H = clean_corpus(corpus_H)

We find the 20 most frequent terms in each corpus.

term_count_C <- qdap::freq_terms(clean_C,20)

term_count_T <- qdap::freq_terms(clean_T,20)

term_count_H <- qdap::freq_terms(clean_H,20)

plot(term_count_C)

plot(term_count_T)

plot(term_count_H)

27.4 Examples 1767

comedies tragedies histories

Basic Statistics

We can also take a look at some basic statistics regarding the number of

characters (letters, not people) and the number of words in each play.

length_of_plays_char_C <- vector(mode="numeric", length=17)

for(j in 1:17){length_of_plays_char_C[j]=nchar(clean_C[[j]][1])}

hist(length_of_plays_char_C, freq=F, main="Distribution of # of char in Shakespeare’s Comedies")

summary(length_of_plays_char_C)

length_of_plays_char_T <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_char_T[j]=nchar(clean_T[[j]][1])}

hist(length_of_plays_char_T, freq=F, main="Distribution of # of char in Shakespeare’s Tragedies")

summary(length_of_plays_char_T)

length_of_plays_char_H <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_char_H[j]=nchar(clean_H[[j]][1])}

hist(length_of_plays_char_H, freq=F, main="Distribution of # of char in Shakespeare’s Histories")

summary(length_of_plays_char_H)

length_of_plays_word_C <- vector(mode="numeric", length=17)

for(j in 1:17){length_of_plays_word_C[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_C[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_C, freq=F, main="Distribution of # of words in Shakespeare’s Comedies")

summary(length_of_plays_word_C)

length_of_plays_word_T <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_word_T[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_T[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_T, freq=F, main="Distribution of # of words in Shakespeare’s Tragedies")

summary(length_of_plays_word_T)

length_of_plays_word_H <- vector(mode="numeric", length=10)

for(j in 1:10){length_of_plays_word_H[j]=length(

strsplit(gsub(’ {2,}’,’ ’,clean_H[[j]][1]),’ ’)[[1]])}

hist(length_of_plays_word_H, freq=F, main="Distribution of # of words in Shakespeare’s Histories")

summary(length_of_plays_word_H)

1768 27 Text Analysis and Text Mining

summary(length_of_plays_char_C)

Min. 1st Qu. Median Mean 3rd Qu. Max.

47368 61656 70294 69295 74133 91107

summary(length_of_plays_char_T)

Min. 1st Qu. Median Mean 3rd Qu. Max.

62703 67876 82889 79677 87843 100786

summary(length_of_plays_char_H)

Min. 1st Qu. Median Mean 3rd Qu. Max.

71811 78630 83089 84155 89740 99953

summary(length_of_plays_word_C)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6930 9056 10198 10090 10849 13260

summary(length_of_plays_word_T)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9301 10246 12360 11759 12905 14718

summary(length_of_plays_word_H)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10488 11535 12142 12270 13089 14475

27.4 Examples 1769

Term-Document Matrices

We convert the corpora to TDM and remove terms that are sparse (too

infrequent).

Create TDMs

C_tdm <- tm::TermDocumentMatrix(clean_C)

T_tdm <- tm::TermDocumentMatrix(clean_T)

H_tdm <- tm::TermDocumentMatrix(clean_H)

Remove sparse terms, with sparsity factor 75%

C_tdm <- tm::removeSparseTerms(C_tdm, 0.75)

T_tdm <- tm::removeSparseTerms(T_tdm, 0.75)

H_tdm <- tm::removeSparseTerms(H_tdm, 0.75)

Print meta data

C_tdm

T_tdm

H_tdm

Convert to matrices

C_m <- as.matrix(C_tdm)

T_m <- as.matrix(T_tdm)

H_m <- as.matrix(H_tdm)

<<TermDocumentMatrix (terms: 2945, documents: 17)>>

Non-/sparse entries: 29556/20509

Sparsity : 41%

Maximal term length: 12

Weighting : term frequency (tf)

<<TermDocumentMatrix (terms: 3491, documents: 10)>>

Non-/sparse entries: 20699/14211

Sparsity : 41%

Maximal term length: 12

Weighting : term frequency (tf)

<<TermDocumentMatrix (terms: 3757, documents: 10)>>

Non-/sparse entries: 22335/15235

Sparsity : 41%

Maximal term length: 14

Weighting : term frequency (tf)

Barcharts

Next, we produce barcharts of the 20 most-frequent (sparsity-removed)

terms in each corpus.

term_frequency_C <- rowSums(C_m)

term_frequency_T <- rowSums(T_m)

term_frequency_H <- rowSums(H_m)

1770 27 Text Analysis and Text Mining

Sort term_frequency in descending order

term_frequency_C <- sort(term_frequency_C, decreasing=TRUE)

term_frequency_T <- sort(term_frequency_T, decreasing=TRUE)

term_frequency_H <- sort(term_frequency_H, decreasing=TRUE)

Plot a barchart of the 20 most common words

barplot(term_frequency_C[1:20], col = "tan", las = 2)

barplot(term_frequency_T[1:20], col = "tan", las = 2)

barplot(term_frequency_H[1:20], col = "tan", las = 2)

comedies tragedies histories

Word Clouds, Commonality Clouds, and Comparison Clouds

It isn’t always easy to read off the terms (we could also list them, of

course) or to get a sense for how the corpora differ from one another

with barcharts; word clouds (where the size of the word is linked to its

frequency in the text) can help.

Create word_freqs

word_freqs_C = data.frame(term_frequency_C)

word_freqs_C$term = rownames(word_freqs_C)

word_freqs_C = word_freqs_C[,c(2,1)]

colnames(word_freqs_C)=c("term","num")

word_freqs_T = data.frame(term_frequency_T)

word_freqs_T$term = rownames(word_freqs_T)

word_freqs_T = word_freqs_T[,c(2,1)]

colnames(word_freqs_T)=c("term","num")

word_freqs_H = data.frame(term_frequency_H)

word_freqs_H$term = rownames(word_freqs_H)

word_freqs_H = word_freqs_H[,c(2,1)]

colnames(word_freqs_H)=c("term","num")

Create wordclouds

wordcloud::wordcloud(word_freqs_C$term, word_freqs_C$num, max.words=100, colors="red")

wordcloud::wordcloud(word_freqs_T$term, word_freqs_T$num, max.words=100, colors="blue")

wordcloud::wordcloud(word_freqs_H$term, word_freqs_H$num, max.words=100, colors="black")

27.4 Examples 1771

comedies tragedies histories

To create commonality clouds and comparison clouds, we first create a

list of all (cleaned) words in the comedies, tragedies, and histories, from

the corpora clean_C, clean_T, and clean_H.

all_c = paste(clean_C[[1]][1],clean_C[[2]][1],clean_C[[3]][1],clean_C[[4]][1],

clean_C[[5]][1],clean_C[[6]][1],clean_C[[7]][1],clean_C[[8]][1],

clean_C[[9]][1],clean_C[[10]][1],clean_C[[11]][1],clean_C[[12]][1],

clean_C[[13]][1],clean_C[[14]][1],clean_C[[15]][1],clean_C[[16]][1],

clean_C[[17]][1],collapse=" ")

all_t = paste(clean_T[[1]][1],clean_T[[2]][1],clean_T[[3]][1],clean_T[[4]][1],

clean_T[[5]][1],clean_T[[6]][1],clean_T[[7]][1],clean_T[[8]][1],

clean_T[[9]][1],clean_T[[10]][1],collapse=" ")

all_h = paste(clean_H[[1]][1],clean_H[[2]][1],clean_H[[3]][1],clean_H[[4]][1],

clean_H[[5]][1],clean_H[[6]][1],clean_H[[7]][1],clean_H[[8]][1],

clean_H[[9]][1],clean_H[[10]][1],collapse=" ")

We join the terms as strings and put them into a single corpus.

ws_corpus = tm::VCorpus(tm::VectorSource(c(all_c,all_t,all_h))

tm::inspect(ws_corpus)

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 3

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 1178027

[[2]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 796779

[[3]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 841554

1772 27 Text Analysis and Text Mining

Now we create a TDM for this corpus, which we cast as a matrix object

before printing the commonality clouds (words shared across the three

corpora), with 100, 200, and 500 words.

ws_tdm = tm::TermDocumentMatrix(ws_corpus)

colnames(ws_tdm) = c("Com.","Trag.","Hist.")

ws_m = as.matrix(ws_tdm)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 100)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 200)

wordcloud::commonality.cloud(ws_m, colors = "darkblue", max.words = 500)

100 words 200 words 500 words

Comparison clouds can be produced using the same syntax.

comp.colours = c("darkred","darkgreen","darkblue")

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 100)

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 200)

wordcloud::comparison.cloud(ws_m, colors = comp.colours, max.words = 500)

100 words 200 words 500 words

Pyramid Plots

We can also produce pyramid plots by first finding the terms that are

common to any two corpora.

27.4 Examples 1773

common_words_CT = subset(ws_m, ws_m[,1] > 0 & ws_m[,2] > 0)

dim(common_words_CT)

head(common_words_CT)

common_words_CH = subset(ws_m, ws_m[,1] > 0 & ws_m[,3] > 0)

dim(common_words_CH)

head(common_words_CH)

common_words_TH = subset(ws_m, ws_m[,2] > 0 & ws_m[,3] > 0)

dim(common_words_TH)

head(common_words_TH)

common_words_CT

[1] 6438 3

Docs

Terms Com. Trag. Hist.

abandon 2 3 0

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abhor 14 16 3

common_words_CH

[1] 6325 3

Docs

Terms Com. Trag. Hist.

abandond 5 0 1

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abet 1 0 1

common_words_TH

[1] 5702 3

Docs

Terms Com. Trag. Hist.

abat 5 5 4

abate 3 2 3

abbey 7 1 4

abe 4 5 1

abhor 14 16 3

abhorrd 5 4 1

The differences in the number of times each token is used in each corpora

can be computed as follows.

difference_CT = abs(common_words_CT[,1] - common_words_CT[,2])

difference_CH = abs(common_words_CH[,1] - common_words_CH[,3])

difference_TH = abs(common_words_TH[,2] - common_words_TH[,3])

Next, we bind these new counts to the respective common_word corpora,

and order them along the differences.

common_words_CT = cbind(common_words_CT,difference_CT)

common_words_CT = common_words_CT[order(common_words_CT[,4],decreasing=TRUE),]

common_words_CH = cbind(common_words_CH,difference_CH)

common_words_CH = common_words_CH[order(common_words_CH[,4],decreasing=TRUE),]

common_words_TH = cbind(common_words_TH,difference_TH)

common_words_TH = common_words_TH[order(common_words_TH[,4],decreasing=TRUE),]

If we want to plot the top 𝑛 = 30 words whose usage was the most

different in each pair of corpora, we proceed as follows.

n=30

top_df_CT = data.frame(x = common_words_CT[1:n,1], y = common_words_CT[1:n,2],

labels = rownames(common_words_CT[1:n,]))

top_df_CH = data.frame(x = common_words_CH[1:n,1], y = common_words_CH[1:n,3],

labels=rownames(common_words_CH[1:n,]))

top_df_TH = data.frame(x = common_words_TH[1:n,2], y = common_words_TH[1:n,3], l

abels=rownames(common_words_TH[1:n,]))

top_df_CT; top_df_CH; top_df_TH

1774 27 Text Analysis and Text Mining

top_df_CT

x y labels

2378 1300 will

1554 581 sir

1343 688 love

1369 818 good

1518 984 come

1454 964 shall

622 142 master

1159 700 well

921 476 one

973 552 man

940 534 ill

1161 759 now

909 540 say

26 380 caesar

922 587 know

830 499 hath

777 496 like

688 413 whi

447 180 ladi

424 164 ani

865 608 make

422 170 sweet

407 158 fair

13 262 rome

569 321 can

676 429 see

696 452 may

309 67 mistress

519 294 mine

537 316 think

top_df_CH

x y labels

1554 434 sir

2378 1394 will

1343 451 love

317 1103 king

1518 798 come

1369 829 good

922 404 know

921 407 one

973 460 man

1159 650 well

900 1400 lord

622 186 master

940 513 ill

909 507 say

688 359 whi

1454 1154 shall

865 567 make

940 649 let

1161 880 now

447 171 ladi

36 310 franc

309 37 mistress

583 319 tis

306 44 fool

676 414 see

9 269 england

830 570 hath

412 152 veri

537 279 think

652 395 must

top_df_TH

x y labels

231 1103 king

861 1400 lord

380 14 caesar

42 327 duke

27 310 franc

54 305 princ

31 269 england

688 451 love

262 25 rome

318 527 god

200 1 antoni

112 309 grace

4 194 john

964 1154 shall

984 798 come

1 187 edward

587 404 know

43 223 crown

483 319 tis

43 196 majesti

152 2 brutus

77 226 unto

581 434 sir

293 154 night

206 70 natur

236 368 day

157 28 doe

777 649 let

104 230 arm

176 298 blood

Finally, we produce the pyramid plots themselves for the common terms

that had the largest difference in usage for each pair of copora.

plotrix::pyramid.plot(top_df_CTx,top_df_CTy,labels=top_df_CT$labels,

gap=500,top.labels=c("Comedies", "Terms", "Tragedies"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)

plotrix::pyramid.plot(top_df_CHx,top_df_CHy,labels=top_df_CH$labels,

gap=500,top.labels=c("Comedies", "Terms", "Histories"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)

plotrix::pyramid.plot(top_df_THx,top_df_THy,labels=top_df_TH$labels,

gap=500,top.labels=c("Tragedies", "Terms", "Histories"), main="Common Terms",

laxlab=NULL, raxlab=NULL, unit=NULL)

27.4 Examples 1775

27.4.4 Ham or Spam

In this example, we are going to use a classical SMS dataset where texts

have been classified as ham/spam in order to build a model which can

predict whether an incoming SMS is spam or ham based on its content.

Initializing the Environment

We will use the following R libraries:

tm for text mining functions;

qdap for some text processing functions;

e1071 for the naive Bayes and support vector machines methods;

dplyr for tidyverse processing;

tidytext for tidyverse analysis;

ggplot2 for tidyverse plotting, and

psych for regular plotting.

Importing and Exploring the Data

We load the dataset as usual.

ham.spam <- read.csv("SMSSpamCollection.csv", sep=",")

ham.spam$Msg <- as.character(ham.spam$Msg)

The dataset consists of 5574 observations and 3 variables/features: SMS

messages, length of the messages, and whether they are ham (+) or spam

(−).

str(ham.spam)

’data.frame’: 5574 obs. of 3 variables:

$ SpamOrHam: Factor w/ 2 levels "ham","spam": 1 1 2 1 1 2 1 1 2 2 ...

$ Msg : chr "Go until jurong point, crazy.. Available only in bugis n great world la ..." ...

$ length : int 111 29 155 49 61 148 77 160 158 154 ...

1776 27 Text Analysis and Text Mining

We print a few SMS (one spam and one ham) to get a better idea as to the

contents of the text.

ham.spam$Msg[12]

ham.spam$Msg[4444]

[1] "SIX chances to win CASH! From 100 to 20,000 pounds txt>

CSH11 and send to 87575. Cost 150p/day, 6days, 16+

TsandCs apply Reply HL 4 info"

[1] "Dear i am not denying your words please"

No human would send the first SMS to another person – we all recognize

it as spam; the second one seems more legitimate – we have all had

conversations of this nature with our partners. The SMS labels confirms

the suspicion.

ham.spam$SpamOrHam[12]

ham.spam$SpamOrHam[4444]

[1] "spam"

[1] "ham"

What is the distribution of ham/spam messages in the dataset?

table(ham.spam$SpamOrHam)

prop.table(table(ham.spam$SpamOrHam))

ham spam

4827 747

ham spam

0.8659849 0.1340151

Before we dive right into text analysis, can we say anything about the SMS

categories just by looking at the lengths of the SMS? Are the examples

above representative of spam and ham messages?

Should we expect spam messages to be longer than ham messages, in

general? The distribution of message lengths is bimodal – does that mean

anything?

library(ggplot2)

ggplot(ham.spam, aes(length)) +

geom_histogram(binwidth=10)

ggplot(ham.spam, aes(length, fill = SpamOrHam)) +

geom_histogram(binwidth=10) +

facet_wrap(~SpamOrHam)

27.4 Examples 1777

There are more ham messages than spam messages in the dataset,

obviously but the height of the distributions is not as important as the

shape: in the absence of more information, if the SMS has 150 characters

or more, say, it would not be the most unreasonable thing in the world to

suspect that it could be spam... but the contents of the message also have

to count for something, right?

Creating the Corpus

In order to do text classification, we first need to prepare a document-term

matrix. The tm functionality from the previous examples does the trick.

(SMS.corpus <- tm::VCorpus(tm::VectorSource(ham.spam$Msg)))

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 5574

We take a quick peek at the first 4 entries to make sure that everything is

as it should be.

sapply(SMS.corpus[1:4], function(x){x$content})

[1] Go until jurong point, crazy.. Available only in bugis n great world la e buffet...

Cine there got amore wat...

[2] Ok lar... Joking wif u oni...

[3] Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121

to receive entry question(std txt rate)T&C’s apply 08452810075over18’s

[4] U dun say so early hor... U c already then say...

1778 27 Text Analysis and Text Mining

Cleaning the Data

As is almost always the case, the next step is to clean the corpus. Note

that the order in which the cleaning steps are performed may affect the

final form of the cleaned corpus.

clean_corpus <- function(corpus){

corpus <- tm::tm_map(corpus, tm::content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en")))

return(corpus)

}

SMS.corpus.clean <- clean_corpus(SMS.corpus)

sapply(SMS.corpus.clean[1:4], function(x){x$content})

[1] go jurong point crazi availabl onli bugi n great world la e buffet cine got amor wat

[2] ok lar joke wif u oni

[3] free entri wkli comp win fa cup final tkts st may text fa receiv entri questionstd

txt ratetc appli

[4] u dun say earli hor u c alreadi say

In the case of spam detection, there could be reasons why we might not

want to be too drastic at the cleaning stage: removing the numerals in

08452810075over18’s in the 3rd SMS, for instance, removes an important

indicator of spam.

Creating the DTM

We want to classify documents, so we need a DTM (and not a TDM)

representation of the text dataset on which to apply classifiers.

SMS.DTM <- tm::DocumentTermMatrix(SMS.corpus.clean)

tm::inspect(SMS.DTM[1:15,20:30])

<<DocumentTermMatrix (documents: 20, terms: 11)>>

Non-/sparse entries: 17/203

Sparsity : 92%

Maximal term length: 11

Weighting : term frequency (tf)

Sample :

Terms

Docs aaniy aaooooright aathilov aathiwher abbey abdomen abeg abelu aberdeen abi abil

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

27.4 Examples 1779

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

Text Visualization

Before we start with classification proper, let us visualize the frequent

terms of both the spam and the ham classes.

spam.cloud <- which(ham.spam$SpamOrHam == "spam")

ham.cloud <- which(ham.spam$SpamOrHam == "ham")

wordcloud::wordcloud(SMS.corpus.clean[ham.cloud],

min.freq=50,colors="steelblue")

wordcloud::wordcloud(SMS.corpus.clean[spam.cloud],

min.freq=50,colors="darkred")

a ham SMS spam SMS a

We can also identify document-specific high-information terms using

the tf-idf weighting.

SMS_words <- ham.spam |>

tidytext::unnest_tokens(word,Msg) |>

dplyr::count(SpamOrHam,word, sort=TRUE) |>

dplyr::ungroup()

1780 27 Text Analysis and Text Mining

SMS_distinctive <- SMS_words |>

tidytext::bind_tf_idf(word,SpamOrHam,n) |>

dplyr::arrange(desc(tf_idf)) |>

dplyr::mutate(word = factor(word,

levels = rev(unique(word)))) |>

dplyr::group_by(SpamOrHam) |>

dplyr::top_n(15,tf_idf) |> dplyr::ungroup()

head(SMS_distinctive)

A tibble: 6 × 6

SpamOrHam word n tf idf tf_idf

<chr> <fct> <int> <dbl> <dbl> <dbl>

1 spam claim 113 0.00611 0.693 0.00424

2 spam prize 92 0.00498 0.693 0.00345

3 ham gt 318 0.00459 0.693 0.00318

4 ham lt 316 0.00456 0.693 0.00316

5 spam won 73 0.00395 0.693 0.00274

6 spam 150p 71 0.00384 0.693 0.00266

A simple visual identifies terms that are specific to spam/ham SMS.

library(ggplot2)

ggplot(SMS_distinctive, aes(word,tf_idf, fill = SpamOrHam)) +

geom_col(show.legend=TRUE) + labs(x=NULL, y="tf_idf") +

facet_wrap(~SpamOrHam) + coord_flip()

27.4 Examples 1781

Training/Testing Data

Classifiers need to be trained on a subset of the data and tested/evaluated

on the complement to avoid overfitting the model. There’s no steadfast

rule, but a 70%/30% split is often applied.
34

34: When attempting to replicate what

follows, remember that we did not set a

seed, and so that your results could be

somewhat different.ind = sample(1:nrow(ham.spam), size=0.7*nrow(ham.spam))

spam.train = subset(ham.spam[ind,], SpamOrHam == "spam")

ham.train = subset(ham.spam[ind,], SpamOrHam == "ham")

ham.spam.train.labels <- ham.spam[ind,]$SpamOrHam

ham.spam.test.labels <- ham.spam[-ind,]$SpamOrHam

We can verify that the training/testing sets are representative of the full

dataset (in terms of the target labels, at least).

prop.table(table(ham.spam.train.labels))

prop.table(table(ham.spam.test.labels))

prop.table(table(ham.spam$SpamOrHam))

ham.spam.train.labels

ham spam

0.8664445 0.1335555

ham.spam.test.labels

ham spam

0.8649133 0.1350867

ham spam

0.8659849 0.1340151

Next, we convert the training/testing messages to DTM and corpora.

SMS.DTM.train <- SMS.DTM[ind,]

SMS.DTM.test <- SMS.DTM[-ind,]

SMS.corpus.clean.train <- SMS.corpus.clean[ind]

SMS.corpus.clean.test <- SMS.corpus.clean[-ind]

We also need to select the features (in this case, the terms) to include in

the model – otherwise, there would be too much information to consider

and the curse of dimensionality rears is ugly head (see Chapter 23).

We can use the list of all terms that appear at least 10 times, say, in the

training messages, for instance.
35

35: Another approach could be to remove

sparse terms.

Freq.Terms <- tm::findFreqTerms(SMS.DTM.train,10)

SMS.DTM.Freq.Terms.train <- SMS.DTM.train[,Freq.Terms]

SMS.DTM.Freq.Terms.test <- SMS.DTM.test[,Freq.Terms]

length(Freq.Terms)

Freq.Terms[1:100]

1782 27 Text Analysis and Text Mining

[1] 614

[1] ’crazi’ ’got’ ’great’ ’onli’ ’point’ ’wat’ ’world’ ’joke’ ’lar’ ’wif’ ’appli’ ’entri’

[13] ’final’ ’free’ ’may’ ’receiv’ ’text’ ’txt’ ’win’ ’wkli’ ’alreadi’ ’dun’ ’earli’ ’say’

[25] ’around’ ’dont’ ’goe’ ’live’ ’think’ ’though’ ’back’ ’freemsg’ ’fun’ ’hey’ ’like’

[36] ’now’ ’send’ ’still’ ’week’ ’word’ ’xxx’ ’brother’ ’even’ ’speak’ ’treat’ ’caller’

[47] ’copi’ ’friend’ ...

We also need to categorize the features so that the data can eventually

be fed into a naïve Bayes classifier, say; the absence of a frequent term

in a SMS message is denoted by "No", while it’s presence is denoted by

"Yes".

yes.no <- function(x){

y <- ifelse(x>0,1,0)

y <- factor(y,levels=c(0,1),labels=c("No","Yes"))

return(y)

}

The (reduced) training/testing sets thus look like:

SMS.train <- apply(SMS.DTM.Freq.Terms.train,2,yes.no)

SMS.test <- apply(SMS.DTM.Freq.Terms.test,2,yes.no)

head(SMS.train)

head(SMS.test)

SMS.train

crazi got great onli point wat ... auction lei

3151 No No No No No No ... No No

1572 No Yes No No No No ... No No

3200 No No No No No Yes ... No No

1805 No No No No No No ... No No

1201 No No No No No No ... No No

534 No No No No No No ... No No

SMS.text

crazi got great onli point wat ... auction lei

3 No No No No No No ... No No

7 No No No No No No ... No No

9 No No Yes No No No ... No No

11 No No No No No No ... No No

13 No No No No No No ... No No

14 No No No No No No ... No No

Naive Bayes Classifier

We now apply the naiveBayes() function from the R library e1071.
36

36: See Section 21.4.4 for details.

Notice the syntax: we apply naiveBayes to the training data SMS.train

and the target variable is the ham/spam label in the training subset

(ham.spam.train.labels). Thelaplace=1option instructsnaiveBayes()

to look "a little bit harder" into the data, while the CV=10 option selects

10 cross-validations replicates.

27.4 Examples 1783

SMS.classifier.NB <- e1071::naiveBayes(SMS.train,ham.spam.train.labels,laplace=1,CV=10)

summary(SMS.classifier.NB)

attributes(SMS.classifier.NB)

Length Class Mode

apriori 2 table numeric

tables 614 -none- list

levels 2 -none- character

isnumeric 614 -none- logical

call 5 -none- call

$names

’apriori’ ’tables’ ’levels’ ’isnumeric’ ’call’

$class

’naiveBayes’

We can now feed the testing data (SMS.test) into the model (SMS.classifier.NB)

with the help of the predict() function.

SMS.test.pred.NB <- predict(SMS.classifier.NB,

newdata = SMS.test)

table(SMS.test.pred.NB,ham.spam.test.labels)

prop.table(table(SMS.test.pred.NB,ham.spam.test.labels))

ham.spam.test.labels

SMS.test.pred.NB ham spam

ham 1444 26

spam 3 200

ham.spam.test.labels

SMS.test.pred.NB ham spam

ham 0.863120143 0.015540944

spam 0.001793186 0.119545726

These confusion matrices are not bad at all! Is there a difference in the

representations of mislabeled and sucessfully labeled test SMS?

Missed=SMS.test[which(SMS.test.pred.NB!=ham.spam.test.labels),]

Succesful=SMS.test[which(SMS.test.pred.NB==ham.spam.test.labels),]

table(Missed)

table(Succesful)

Missed

No Yes

17653 153

Succesful

No Yes

1000706 8710

The ratios are basically the same in both instances. We can also take a

look at the original text of a few mislabeled and successfully labeled test

SMS.

1784 27 Text Analysis and Text Mining

head(ham.spam[as.numeric(rownames(Missed)),]$Msg)

head(ham.spam[as.numeric(rownames(Succesful)),]$Msg)

some mispredicted SMS

[1] ’England v Macedonia - dont miss the goals/team news. Txt ur national team to 87077 eg

ENGLAND to 87077 Try:WALES, SCOTLAND 4txt/ú1.20 POBOXox36504W45WQ 16+’

[2] ’U 447801259231 have a secret admirer who is looking 2 make contact with U-find out who

they R*reveal who thinks UR so special-call on 09058094597’

[3] ’SMS. ac Blind Date 4U!: Rodds1 is 21/m from Aberdeen, United Kingdom. Check Him out

http://img. sms. ac/W/icmb3cktz8r7!-4 no Blind Dates send HIDE’

[4] ’XCLUSIVE@CLUBSAISAI 2MOROW 28/5 SOIREE SPECIALE ZOUK WITH NICHOLS FROM PARIS.FREE ROSES

2 ALL LADIES !!! info: 07946746291/07880867867 ’

[5] ’Its a valentine game. . . Send dis msg to all ur friends. .. If 5 answers r d same then

someone really loves u. Ques- which colour suits me the best?rply me’

[6] ’Hi I\’m sue. I am 20 years old and work as a lapdancer. I love sex. Text me live - I\’m

i my bedroom now. text SUE to 89555. By TextOperator G2 1DA 150ppmsg 18+’

some correctly predicted SMS

[1] ’Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to

receive entry question(std txt rate)T&C\’s apply 08452810075over18\’s’

[2] ’Even my brother is not like to speak with me. They treat me like aids patent.’

[3] ’WINNER!! As a valued network customer you have been selected to receivea £900 prize reward!

To claim call 09061701461. Claim code KL341. Valid 12 hours only.’

[4] ’I\’m gonna be home soon and i don\’t want to talk about this stuff anymore tonight, k? I\’ve

cried enough today.’

[5] ’URGENT! You have won a 1 week FREE membership in our £100,000 Prize Jackpot! Txt the word:

CLAIM to No: 81010 T&C www.dbuk.net LCCLTD POBOX 4403LDNW1A7RW18’

[6] ’I\’ve been searching for the right words to thank you for this breather. I promise i wont

take your help for granted and will fulfil my promise. You have been wonderful and a blessing

at all times.’

Support Vector Machines

We can use other classifiers – e1071 also implements support vector

machines.
37

The principle is the same, although we do not need to first37: See Section for 21.4.2 for details.

categorize the features (as we had to do for naïve Bayes.

The cost parameter is related to the price of allowing misclassifica-
tions: higher values attempt to minimize such misclassifications, but

the resulting model tends to lead to overfitting (a little flexibility in re:

misclassfications is a good thing in the long run).

There is some evidence to suggest that the choice of the "linear" kernel

is preferable when dealing with text data (as opposed to gaussian for

some numerical data), but other kernels can also be used.

The steps proceeds as in naïve Bayes (although we demonstrate the

classAgreement functionality for evaluation the classifier). You can get

details on the method by querying the help files.

SMS.classifier.SVM <- e1071::svm(as.factor(ham.spam.train.labels) ~.,

data=as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

type="C-classification", cost=10, kernel="linear")

27.4 Examples 1785

summary(SMS.classifier.SVM)

attributes(SMS.classifier.SVM)

Call:

svm(formula = ham.spam.train.labels ~ ., data = as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

type = "C-classification", cost = 10, kernel = "linear")

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.001628664

Number of Support Vectors: 424

(299 125)

Number of Classes: 2

Levels:

ham spam

$names

’call’ ’type’ ’kernel’ ’cost’ ’degree’ ’gamma’ ’coef0’ ’nu’ ’epsilon’ ’sparse’ ’scaled’

’x.scale’ ’y.scale’ ’nclasses’ ’levels’ ’tot.nSV’ ’nSV’ ’labels’ ’SV’ ’index’ ’rho’ ’compprob’

’probA’ ’probB’ ’sigma’ ’coefs’ ’na.action’ ’fitted’ ’decision.values’ ’terms’

$class

’svm.formula’ ’svm’

We can now feed the testing data into the model with the help of the

predict() function.

SMS.test.pred.SVM <- predict(SMS.classifier.SVM,as.data.frame(as.matrix(SMS.DTM.Freq.Terms.test)))

summary(SMS.test.pred.SVM)

ham spam

1430 243

Of course, it may not be sufficient to know how many SMS are predicted

to be ham and/or spam – we might want to know if individual SMS are

correctly predicted.

(confusion.matrix = table(pred = SMS.test.pred.SVM, true = ham.spam.test.labels))

e1071::classAgreement(confusion.matrix,match.names=TRUE)

true

pred ham spam

ham 1401 29

spam 46 197

1786 27 Text Analysis and Text Mining

$diag

[1] 0.95517

$kappa

[1] 0.81406

$rand

[1] 0.91431

$crand

[1] 0.76592

More information on this last function can be obtained by typing in

?e1071::classAgreement at the prompt.

SVMs with PCA

Finally, we re-visit the SVM model by first reducing the DTM data to its

first 4 principal components in order to try to mitigate the effects of the

curse of dimensionality and to introduce a more complete classification

workflow:
38

38: See Chapter 23 for more details.

1. compute the principal composition of the training data;

2. set-up the formulas for going back and forth between the original

data and the rotated (reduced) data;

3. plot the classes against the first 4 principal components (arbitrary);

4. express the test data in the training PCA universe;

5. tune the SVM model (run some preliminary code to determine the

optimal choice of model parameters);

6. train the SVM model;

7. fit the SVM model to testing data, and

8. evaluate the model.

1: find the PCs of the training data and only keep the first 4, say

SMS.train.pca <- prcomp(as.data.frame(as.matrix(SMS.DTM.Freq.Terms.train)),

center = TRUE, scale = TRUE)

SMS.train.pca.reduced = SMS.train.pca$x

SMS.train.pca.reduced[,5:ncol(SMS.train.pca.reduced)] = 0 # setting PCs 5-end to 0

2: going back and forth between the original data and the rotated data

SMS.train.recover.full = exp(t(t(SMS.train.pca$x %*% t(SMS.train.pca$rotation)) *
SMS.train.pca$scale + SMS.train.pca$center))

SMS.train.recover.pca = exp(t(t(SMS.train.pca.reduced %*% t(SMS.train.pca$rotation)) *
SMS.train.pca$scale + SMS.train.pca$center))

put the data in a data frame

SMS.train.pca.reduced.model = SMS.train.pca.reduced

SMS.train.pca.reduced.model = data.frame(SMS.train.pca.reduced, ham.spam.train.labels)

training.pca = SMS.train.pca.reduced.model[,c(1,2,3,4)]

27.4 Examples 1787

3: plot the classes in the training data set against the first 4 PCs

psych::pairs.panels(SMS.train.pca$x[,1:4], pch=21,

bg=rainbow(11)[unclass(ham.spam.train.labels)])

4: put test data in the PCA context

SMS.test.pca <- scale(as.data.frame(as.matrix(SMS.DTM.Freq.Terms.test)),

SMS.train.pca$center, SMS.train.pca$scale) %*% SMS.train.pca$rotation

SMS.test.pca.reduced <- SMS.test.pca

SMS.test.pca.reduced[,5:ncol(SMS.train.pca.reduced)] = 0

SMS.test.pca.reduced.model = data.frame(SMS.test.pca.reduced)

5: tune SVM model to find a good choice for the cost parameter C

tuning.pca <- e1071::tune(e1071::svm, train.x=training.pca,

train.y=as.factor(ham.spam.train.labels), kernel="linear",

ranges=list(cost=10^(-3:3)))

print(tuning.pca) # optimal parameters

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost

10

- best performance: 0.0302492

1788 27 Text Analysis and Text Mining

6: train the SVM model

SMS.classifier.SVM.pca <- e1071::svm(as.factor(ham.spam.train.labels) ~., data=training.pca,

type="C-classification", cost=10, kernel="linear")

summary(SMS.classifier.SVM.pca)

Call: svm(formula = ham.spam.train.labels ~ ., data = training.pca, type = "C-classification",

cost = 10, kernel = "linear")

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.25

Number of Support Vectors: 316

(158 158)

Number of Classes: 2

Levels:

ham spam

7: fit SVM to test data

SMS.test.pred.SVM.pca <- predict(SMS.classifier.SVM.pca,SMS.test.pca.reduced)

summary(SMS.test.pred.SVM.pca) # provide a summary of the predicted values

ham spam

1430 243

8: evaluate the fitted model

(confusion.matrix.pca = table(pred = SMS.test.pred.SVM.pca, true = ham.spam.test.labels))

e1071::classAgreement(confusion.matrix.pca,match.names=TRUE)

true

pred ham spam

ham 1438 40

spam 9 186

$diag

[1] 0.97071

$kappa

[1] 0.86696

$rand

[1] 0.94310

$crand

[1] 0.83437

How does the model on the reduced data compare to the original SVM

model?

27.4 Examples 1789

27.4.5 NHL Game Recaps (Reprise)

In this section, we revisit the NHL game recaps of Section 27.4.1, this time

to cluster the terms in the documents. Clustering is an unsupervised

learning technique that can be used to determine which entities or objects,

typically represented by rows in the data, are similar to each other. For

text mining, we can use clustering to determine which documents are

similar to one another (based on their term signature), for instance.
39

39: We will discuss topic modeling, an-

other unsupervised learning application

to text data, in Chapter 32.For the purpose of this example, we will use hierarchical clustering, but

any other clustering approach would be just as acceptable.
40

40: See Chapter 22 for details.

Review of Hierarchical Clustering in R

Let’s start with a simple example of hierarchical clustering using numeric

data. The three lines of data below represent days of rainfall in a number

of Canadian cities. Can we use hierarchical clustering to get a sense of

which cities are similar to each other?

city = c("Montreal","Ottawa","Toronto","Quebec City","Kingston","Trois-Rivieres","Windsor",

"Hamilton","London","Halifax","Moncton","Saint John","St. John’s","Sudbury",

"Thunder Bay","Winnipeg","Saskatoon","Regina","Calgary","Edmonton","Kelowna",

"Vancouver","Victoria")

rainfall = c(1000,920,831,1184,960,1123,935,897,1012,1468,1124,1295,1534,903,684,521,365,

390,456,419,345,1457,705)

days = c(163,161,145,175,159,161,150,149,168,162,161,158,212,167,143,125,87,118,112,123,

120,168,148)

The code below starts by creating and scaling a data frame for the data.

Then hclust() builds the clustering information, which plot() then

uses to display the clustering dendrogram.
41

41: We use hclust’s Euclidean dissimilar-

ity and complete linkage defaults.

rain.data <- data.frame(city, rainfall,days)

dist.rain <- dist(scale(rain.data[,2:3]))

hc <- hclust(dist.rain) # distances as hc object

plot(hc, labels = rain.data$city)

1790 27 Text Analysis and Text Mining

It is not surprising to see that Ottawa and Kingston are very similar when

it comes to rainfall totals and number of rainy days, as are Hamilton,

Windsor, and Toronto (each group of cities being in the same general

region), but it might be surprising to see Halifax and Vancouver as being

similar – until we remember that they are both coastal cities.

The Return of the Text-Rich Hockey Dataset

Now that we have seen a simple example of how hierarchical clustering

works with numerical data, we turn our attention back to text data, and

the hockey dataset of Section 27.4.1.

As we did then, we clean the data (removing stop words, etc.) from the

Sens games, at which point we create a term-document matrix (TDM)

from the cleaned text data.

With the TDM in hand, we can switch over to clustering the data, once we

have generated a distance matrix (DM),
42

which we use to hierarchically42: We could consider either document or

term similarity for the DM; here we will

use term similarity.

cluster the data, and generate the text data’s cluster dendrogram.

recaps <- read.csv(file="Recap_data_first_pass_utf8.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

Isolate the text recaps

AP.recaps <- recaps$AP.Recap

Make a vector source

AP.recaps.source <- tm::VectorSource(AP.recaps)

Make a volatile corpus

AP.recaps.corpus <- tm::VCorpus(AP.recaps.source)

Create a customized function to clean the corpus

clean_corpus_Sens <- function(corpus){

corpus <- tm::tm_map(corpus, content_transformer(qdap::replace_abbreviation))

corpus <- tm::tm_map(corpus, tm::removePunctuation)

corpus <- tm::tm_map(corpus, tm::removeNumbers)

corpus <- tm::tm_map(corpus, tm::stemDocument)

corpus <- tm::tm_map(corpus, tm::content_transformer(tolower))

corpus <- tm::tm_map(corpus, tm::stripWhitespace)

corpus <- tm::tm_map(corpus, tm::removeWords, c(tm::stopwords("en"), "game", "first",

"second", "third", "Ottawa", "Senators"))

return(corpus)

}

Apply the customized function to the corpus

clean_corp.AP.recaps <- clean_corpus_Sens(AP.recaps.corpus)

Create a TDM from the corpus

AP.recaps_tdm <- tm::TermDocumentMatrix(clean_corp.AP.recaps)

Remove sparse terms

AP.recaps_tdm_50 <- tm::removeSparseTerms(AP.recaps_tdm,sparse=.5)

27.4 Examples 1791

What effect did this have on the number of terms?

AP.recaps_tdm_50

<<TermDocumentMatrix (terms: 82, documents: 101)>>

Non-/sparse entries: 5806/2476

Sparsity : 30%

Maximal term length: 8

Weighting : term frequency (tf)

Convert AP.recaps_tdm to a matrix: AP.recaps_m

AP.recaps_tdm_50_m <- as.matrix(AP.recaps_tdm_50)

Save the term document matrix as a data frame

TDM_50.df <- as.data.frame(AP.recaps_tdm_50_m)

TDM_50.df

1 2 3 4 5 6 7 8 9 10 ... 92 93 94 95 96 97 98 99 100 101

also 2 0 1 2 1 1 1 1 2 1 ... 4 1 1 1 0 2 0 1 2 0

anderson 3 3 0 2 3 5 1 13 6 1 ... 4 3 5 4 5 2 2 2 10 6

assist 1 0 1 2 0 2 2 0 2 0 ... 4 1 2 1 1 0 2 4 0 2

back 0 3 0 1 0 0 2 1 1 0 ... 4 5 1 1 3 2 1 1 4 1

beat 1 3 1 3 1 1 1 1 1 0 ... 2 1 2 0 0 3 1 3 2 0

befor 1 0 1 4 0 3 2 0 0 1 ... 1 0 0 1 0 2 0 0 0 1

boucher 2 2 0 0 3 2 0 0 2 1 ... 4 3 0 4 1 2 1 3 3 1

came 2 1 0 1 2 2 0 1 0 3 ... 2 2 1 1 2 2 0 1 1 1

chanc 0 2 0 0 0 0 2 1 1 2 ... 2 0 5 2 0 2 0 1 1 0

coach 4 3 0 1 2 1 1 0 3 5 ... 2 2 1 2 1 3 2 2 2 2

come 1 0 0 1 0 1 1 0 1 2 ... 2 1 1 1 0 0 0 0 1 1

craig 1 1 0 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 2

didnt 1 2 0 1 2 2 1 2 0 0 ... 1 1 1 1 3 1 1 1 5 1

end 0 0 0 0 0 0 0 1 2 0 ... 1 1 0 0 4 1 0 0 0 1

erik 2 1 0 1 1 0 1 1 0 2 ... 1 1 1 0 0 1 1 1 1 2

final 0 0 0 1 0 0 0 2 0 1 ... 2 2 4 4 3 2 1 6 3 5

five 1 0 0 1 0 1 3 0 1 2 ... 0 1 0 1 1 0 1 1 0 0

four 2 0 1 1 0 1 0 0 2 1 ... 3 1 0 2 0 2 1 3 2 3

gave 0 1 1 2 0 0 2 1 0 0 ... 0 2 0 2 0 1 1 0 2 0

get 3 2 0 3 2 3 1 0 1 2 ... 2 3 2 5 3 3 3 2 4 2

give 1 1 0 4 1 0 0 1 0 0 ... 0 1 0 3 1 2 0 2 0 2

goal 9 2 9 17 4 4 6 1 3 4 ... 8 13 5 5 1 13 5 4 5 4

good 1 0 0 2 1 4 1 0 3 3 ... 3 1 2 2 1 0 5 3 1 0

got 1 2 0 3 5 0 1 1 0 1 ... 4 2 5 1 0 4 2 1 2 1

...

two 1 2 3 4 0 4 4 3 0 2 ... 9 5 2 2 2 1 6 3 4 3

way 1 3 0 0 1 2 1 1 2 1 ... 0 2 1 2 2 0 1 1 1 5

went 0 0 0 1 0 1 1 0 1 0 ... 1 1 1 1 2 1 3 1 0 0

win 1 4 0 2 0 0 2 2 1 0 ... 3 6 0 1 2 3 0 1 1 1

The document signatures of the terms have a fair number of non-zero

entries, as we would expect since we eliminated sparse terms.

1792 27 Text Analysis and Text Mining

Compute distance matrices

dist_50 = dist(TDM_50.df)

also anderson assist back beat befor boucher ...

anderson 28.160256

assist 14.798649 30.594117

back 15.874508 26.095977 18.947295

beat 15.524175 27.313001 18.000000 15.066519

befor 12.529964 30.331502 16.613248 17.464249 14.142136

boucher 14.247807 27.676705 16.431677 16.583124 15.362291 16.613248

came 14.387495 28.879058 16.792856 16.643317 16.552945 13.341664 16.000000 ...

...

With the distance matrix created, the next step is to cluster the terms

using the distance matrix.

Build the hc object

hc.50 = hclust(dist_50)

Plot the dendograms

plot(hc.50)

The dendrogram is not easy to read, but we can get the labels directly, if

needed.

Build hcd

hcd.50 = as.dendrogram(hc.50)

labels

labels(hcd.50)

27.4 Examples 1793

[1] ’anderson’ ’point’ ’night’ ’team’ ’got’ ’hoffman’ ’lead’ ’tie’ ’win’ ’net’ ’puck’

[12] ’left’ ’karlsson’ ’right’ ’four’ ’stop’ ’way’ ’ryan’ ’final’ ’last’ ’one’ ’guy’

[23] ’boucher’ ’coach’ ’minut’ ’back’ ’didnt’ ’think’ ’time’ ’power’ ’beat’ ’chanc’

[33] ’injuri’ ’miss’ ’straight’ ’gave’ ’mark’ ’like’ ’saturday’ ’scratch’ ’also’ ’mike’

[43] ’came’ ’make’ ’open’ ’befor’ ’kyle’ ’erik’ ’craig’ ’notes’ ’host’ ’next’ ’past’

[54] ’pass’ ’put’ ’thursday’ ’come’ ’five’ ’great’ ’tuesday’ ’end’ ’went’ ’give’ ’nhl’

[65] ’start’ ’assist’ ’three’ ’get’ ’good’ ’made’ ’save’ ’season’ ’just’ ’two’ ’period’

[76] ’shot’ ’play’ ’score’ ’ottawa’ ’said’ ’goal’ ’senat’

Say we are looking for 𝑘 = 2 clusters.

result = cutree(hc.50, k=2)

cluster 1

rownames(TDM_50.df)[result==1]

cluster 2

rownames(TDM_50.df)[result==2]

cluster 1

[1] ’anderson’ ’point’ ’night’ ’team’ ’got’ ’hoffman’ ’lead’ ’tie’ ’win’ ’net’ ’puck’

...

[65] ’start’ ’assist’ ’three’ ’get’ ’good’ ’made’ ’save’ ’season’ ’just’ ’two’

cluster 2

[1] ’period’ ’shot’ ’play’ ’score’ ’ottawa’ ’said’ ’goal’ ’senat’

The terms found in a cluster are those for whom the document signatures

are similar to one another in the corpus.

Using the TDM to find Associations

The TDM can also be used to find terms that are associated with each
other (i.e., terms that appear with each other) across documents. Here

we see which other terms are associated with the term ’karlsson’,
43

as 43: Former Senators player Erik Karlsson.

visualized using a dotplot.

(associations_EK <- tm::findAssocs(AP.recaps_tdm, "karlsson", 0.33)) # 0.33: lower correlation limit

$karlsson =

erik

0.68

lundqvist

0.44

toward

0.42

kreider

0.41

tough

0.39

ever

0.38

terrif

0.38

bounc

0.37

brendan

0.37

forget

0.37

log

0.37

foot

0.35

two

0.34

bradi

0.33

burn

0.33

contest

0.33

dillon

0.33

leblanc

0.33

martinrecord

0.33

method

0.33

pavelskisaid

0.33

pop

0.33

safe

0.33

sharkson

0.33

skjei

0.33

struck

0.33

toss

0.33

tremend

0.33

1794 27 Text Analysis and Text Mining

associations_EK.df <- qdap::list_vect2df(associations_EK)[,2:3]

library(ggplot2)

ggplot(associations_EK.df,aes(y=associations_EK.df[,1])) +

geom_point(aes(x=associations_EK.df[,2]), data=associations_EK.df, size = 3)

It is not really surprising that the word with the highest co-occurrence

frequency is ‘erik’ (since that is the player’s full name), but some of the

other counts are perhaps a bit more surprising: Henrik Lundqvist, a

fellow Swede, and Chris Kreider played for the New York Rangers that

year, a team the Senators faced 10 times in 2016-2017. This may explain

why their last names show up in the dotplot.

27.4.6 The Scottish Play

In this section, we analyze the emotional content in Shakespeare’s

Macbeth.
44

44: This example borrows even more heav-

ily than usual from [39].

Sentiment Analysis Workflow

In general, we conduct term-by-term sentiment analysis of text as fol-

lows:

1. start with text data;

2. un-nest the tokens to produce a first iteration of tidy text;
3. clean and process the tidy text as required by the context;

27.4 Examples 1795

4. join the tidy text to an appropriate sentiment lexicon;

5. summarize the tidy text/sentiment lexicon into a first iteration of

summarized text;
6. clean and analyze the summarized text, and

7. visualize and present the text mining results.

Sentiment Lexicons

Throughout, we will use the sentiment lexicons included with the

tidytext package: AFINN, nrc, bing, loughran.

library(tidytext)

library(textdata) # to obtain the Lexicons

AFINN = get_sentiments("afinn") # words on a scale from -5 (negative) to 5 (positive)

BING = get_sentiments("bing") # binary negative/positive

NRC = get_sentiments("nrc") # assigns categories of sentiments (possibly 1+ to a term)

LOUGHRAN = get_sentiments("loughran")

We can take a quick look at the 4 lexicons – the first thing to notice is that

they do not all contain the same number of observations.

str(AFINN)

table(AFINN$value)

head(AFINN)

tail(AFINN)

spec_tbl_df [2,477 x 2] (S3: spec_tbl_df/tbl_df/tbl/data.frame)

$ word : chr [1:2477] "abandon" "abandoned" "abandons" "abducted" ...

$ value: num [1:2477] -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 ...

- attr(*, "spec")=

.. cols(

.. word = col_character(),

.. value = col_double()

..)

- attr(*, "problems")=<externalptr>

-5 -4 -3 -2 -1 0 1 2 3 4 5

16 43 264 966 309 1 208 448 172 45 5

A tibble: 6 x 2

word value

<chr> <dbl>

1 abandon -2

2 abandoned -2

3 abandons -2

4 abducted -2

5 abduction -2

6 abductions -2

A tibble: 6 x 2

word value

<chr> <dbl>

1 youthful 2

2 yucky -2

3 yummy 3

4 zealot -2

5 zealots -2

6 zealous 2

1796 27 Text Analysis and Text Mining

str(BING)

table(BING$sentiment)

head(BING)

tail(BING)

tibble [6,786 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:6786] "2-faces" "abnormal" "abolish" "abominable" ...

$ sentiment: chr [1:6786] "negative" "negative" "negative" "negative" ...

negative positive

4781 2005

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 2-faces negative

2 abnormal negative

3 abolish negative

4 abominable negative

5 abominably negative

6 abominate negative

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 zealous negative

2 zealously negative

3 zenith positive

4 zest positive

5 zippy positive

6 zombie negative

str(NRC)

table(NRC$sentiment)

head(NRC)

tail(NRC)

tibble [13,872 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:13872] "abacus" "abandon" "abandon" "abandon" ...

$ sentiment: chr [1:13872] "trust" "fear" "negative" "sadness" ...

anger anticipation disgust fear joy

1245 837 1056 1474 687

negative positive sadness surprise trust

3316 2308 1187 532 1230

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 abacus trust

2 abandon fear

3 abandon negative

4 abandon sadness

5 abandoned anger

6 abandoned fear

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 zealous trust

2 zest anticipation

3 zest joy

4 zest positive

5 zest trust

6 zip negative

27.4 Examples 1797

str(LOUGHRAN)

table(LOUGHRAN$sentiment)

head(LOUGHRAN)

tail(LOUGHRAN)

tibble [4,150 x 2] (S3: tbl_df/tbl/data.frame)

$ word : chr [1:4150] "abandon" "abandoned" "abandoning" "abandonment" ...

$ sentiment: chr [1:4150] "negative" "negative" "negative" "negative" ...

constraining litigious negative positive superfluous uncertainty

184 904 2355 354 56 297

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 abandon negative

2 abandoned negative

3 abandoning negative

4 abandonment negative

5 abandonments negative

6 abandons negative

A tibble: 6 x 2

word sentiment

<chr> <chr>

1 stratum superfluous

2 superannuation superfluous

3 theses superfluous

4 ubiquitous superfluous

5 wheresoever superfluous

6 whilst superfluous

At a first glance, it seems that there are more terms in the negative end of

the "sentimental spectrum". What kind of an effect might this have on

sentiment analysis?
45

45: Is that the same for every language?

French seems to have more room for posi-

tive terms, but is that simply confirmation

bias at play?

We can also compare how the various lexicons grade specific words –

let’s take a look at a few possibilities.

words = c("abandon","bad","not","cool","egregious","strike")

A.w = AFINN[AFINN$word %in% words,]

A.w$lexicon = "AFINN"

colnames(A.w)[2] = "sentiment"

B.w = BING[BING$word %in% words,]

B.w$lexicon = "BING"

N.w = NRC[NRC$word %in% words,]

N.w$lexicon = "NRC"

L.w = LOUGHRAN[LOUGHRAN$word %in% words,]

L.w$lexicon = "LOUGHRAN"

T.w = rbind(A.w,B.w,N.w,L.w)

dplyr::arrange(T.w,word) |> print(n = Inf)

A tibble: 25 x 3

word sentiment lexicon

<chr> <chr> <chr>

1 abandon -2 AFINN

2 abandon fear NRC

3 abandon negative NRC

4 abandon sadness NRC

5 abandon negative LOUGHRAN

1798 27 Text Analysis and Text Mining

6 bad -3 AFINN

7 bad negative BING

8 bad anger NRC

9 bad disgust NRC

10 bad fear NRC

11 bad negative NRC

12 bad sadness NRC

13 bad negative LOUGHRAN

14 cool 1 AFINN

15 cool positive BING

16 cool positive NRC

17 egregious negative BING

18 egregious anger NRC

19 egregious disgust NRC

20 egregious negative NRC

21 egregious negative LOUGHRAN

22 strike -1 AFINN

23 strike negative BING

24 strike anger NRC

25 strike negative NRC

Notes and Comments

Does it make sense to use a social media lexicon to analyze emo-

tional content in Shakespeare’s plays? Context-specific lexicons
can always be used, instead, but they first need to be built (time-

consuming) and validated (requires domain expertise).

Beware the no-free lunch theorem: the most suitable lexicon may

change from project to project.

As a rule of thumb, it appears that applying sentiment analysis to

any text that is intelligible without a slew of annotations is likely to

yield more insight than text that requires annotation, but the latter

can still be valuable.

In general, it seems easier to identify a clear sentiment in a short

text than in a long one.

The unigram term “bad” is identified as a negative word, whereas

“not” is seen as neutral, but “not bad” would be a mostly positive

bigram. We have discussed bigrams in Section 27.4.2; there is a lot

more to be said on the topic (see Chapter 32).

Matching Sentiments to Words

Let’s take a quick look at how we can set-up the matching between senti-

ments and terms using a lexicon. For the purposes of this example, we

will use the NRC lexicon, together with A Midsummer Night’s Dream, one

of the more whimsical of Shakespeare’s comedies. We start by creating a

custom lexicon for the works of Shakespeare at the Gutenberg Project.

word = c("etext", "copyright", "implications", "electronic", "version", "william",

"shakespeare", "inc", "gutenberg", "electronic", "machine", "distributed",

"commercially", "commercial", "distribution", "download", "shareware")

27.4 Examples 1799

lexicon = rep("custom",17)

custom = data.frame(word,lexicon)

stop_words_custom_gut = rbind(tidytext::stop_words,custom)

Next, we extract the play and put it into a tidy dataset.

my_mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/"

msnd <- gutenbergr::gutenberg_download(c(1514),my_mirror)

tidy_msnd <- msnd |>

tidytext::unnest_tokens(word,text) |>

dplyr::mutate(word = stringr::str_extract(word,"[a-z’]+")) |> # removing odd encodings

dplyr::anti_join(stop_words_custom_gut) |> # removing the non-play terms

na.omit() # remove NAs

Now, let’s extract the surprise words (and attendent frequencies) from

A Midsummer Night’s Dream (according to the NRC lexicon):

nrc_surprise <- NRC |>

dplyr::filter(sentiment == "surprise")

tidy_msnd |>

dplyr::inner_join(nrc_surprise) |>

dplyr::count(word, sort = TRUE) |> print(n = Inf)

A tibble: 58 x 2

word n

<chr> <int>

1 sweet 48

2 art 16

3 leave 15

4 death 14

5 pray 13

6 break 7

7 lovely 7

8 marry 7

9 youth 7

10 catch 5

11 wild 5

12 jest 4

13 kiss 4

14 lose 4

15 spirits 4

16 cheer 3

17 fright 3

18 hope 3

19 judgment 3

20 luck 3

21 perchance 3

22 teach 3

23 chance 2

24 mouth 2

25 musical 2

26 revenge 2

27 stealth 2

28 sun 2

29 trip 2

30 worm 2

31 advance 1

32 angel 1

33 ceremony 1

34 conjure 1

35 frantic 1

36 gift 1

37 illusion 1

38 laughter 1

39 lightning 1

40 marvel 1

41 merriment 1

42 murder 1

43 palpable 1

44 precious 1

45 saint 1

46 scare 1

47 screech 1

48 senseless 1

49 shot 1

50 shout 1

51 shriek 1

52 slip 1

53 smile 1

54 sunny 1

55 tempest 1

56 thief 1

57 tickle 1

58 vanished 1

We can do the same for the anger terms.

nrc_anger <- NRC |>

dplyr::filter(sentiment == "anger")

tidy_msnd |>

dplyr::inner_join(nrc_anger) |>

dplyr::count(word, sort = TRUE) |> print(n = Inf)

1800 27 Text Analysis and Text Mining

A tibble: 133 x 2

word n

<chr> <int>

1 fear 17

2 death 14

3 bear 10

4 hate 9

5 scorn 9

6 lie 7

7 youth 7

8 mistress 6

9 hell 5

10 spite 5

11 strike 5

12 cross 4

13 derision 4

14 force 4

15 lose 4

16 steal 4

17 words 4

18 adder 3

19 beast 3

20 bellows 3

21 bloody 3

22 cruel 3

23 fierce 3

24 hateful 3

25 honest 3

26 ill 3

27 injury 3

28 offend 3

29 wound 3

30 angry 2

31 bully 2

32 confusion 2

33 curse 2

34 dame 2

35 darkness 2

36 delay 2

37 deny 2

38 deserve 2

39 discord 2

40 dreadful 2

41 fight 2

42 grim 2

43 hatred 2

44 hurt 2

45 jealous 2

46 jealousy 2

47 liquor 2

48 loath 2

49 loathe 2

50 lying 2

51 mad 2

52 murderer 2

53 musical 2

54 rage 2

55 revenge 2

56 tyrant 2

57 wasted 2

58 anger 1

59 anguish 1

60 argument 1

61 bark 1

62 battle 1

63 bee 1

64 burial 1

65 complaint 1

66 cruelty 1

67 cur 1

68 damn 1

69 deceive 1

70 defect 1

71 desert 1

72 despise 1

73 detest 1

74 disgrace 1

75 disobedience 1

76 disparage 1

77 dissension 1

78 distracted 1

79 elf 1

80 enmity 1

81 exile 1

82 fee 1

83 foe 1

84 foul 1

85 fury 1

86 gore 1

87 guilty 1

88 harbinger 1

89 harshness 1

90 hit 1

91 hot 1

92 hunting 1

93 injurious 1

94 insufficiency 1

95 killing 1

96 lightning 1

97 lunatic 1

98 madman 1

99 mighty 1

100 miserable 1

101 mislead 1

102 moral 1

103 murder 1

104 odious 1

105 offended 1

106 pare 1

107 prison 1

108 prosecute 1

109 raging 1

110 rail 1

111 riot 1

112 scar 1

113 scare 1

114 senseless 1

115 shiver 1

116 shot 1

117 shout 1

118 shriek 1

119 shun 1

120 sinister 1

121 slay 1

122 stone 1

123 strife 1

124 tempest 1

125 thief 1

126 throttle 1

127 torment 1

128 ungrateful 1

129 unkind 1

130 warrior 1

131 whip 1

132 wrath 1

133 wretch 1

Note that there are overlaps: “revenge”, for instance, is in both collections.

In total, there are 286 occurrences of anger terms in the cleaned up

text data, and 225 occurrences of surprise terms. Does this fit with the

nature of the play?

27.4 Examples 1801

term-by-term Sentiment Analysis of Macbeth

Instead of finding words that express specific sentiments, we are going

to compute a score for various sections of Macbeth.

First, we load a processed version of the text.

macbeth = read.csv("Macbeth.csv", header=TRUE, sep=",",

stringsAsFactors=FALSE)

str(macbeth)

’data.frame’: 15221 obs. of 6 variables:

$ Act : int 1 1 1 1 1 1 1 1 1 1 ...

$ Scene : int 1 1 1 1 1 1 1 1 1 1 ...

$ Speaker : chr "First Witch" "First Witch" "Second Witch" "Second Witch" ...

$ Text : chr "When shall we three meet again" "In thunder, lightning, or in rain?" ...

$ Scene_Line: int 1 2 3 4 5 6 7 8 9 10 ...

$ Play_Line : int 1 2 3 4 5 6 7 8 9 10 ...

The Act and Scene variables could be combined to provide an increasing

identifier for the play’s sections. For the purpose of this example, we only

want to keep information on the text, the line number, and the section.

macbeth$section = macbeth$Act*10 + macbeth$Scene

macbeth <- macbeth |>

dplyr::select(c("Text","Play_Line","section"))

head(macbeth)

Text Play_Line section

1 When shall we three meet again 1 11

2 In thunder, lightning, or in rain? 2 11

3 When the hurlyburly’s done, 3 11

4 When the battle’s lost and won. 4 11

5 That will be ere the set of sun. 5 11

6 Where the place? 6 11

Next, we unnest the tokens into a tidy format, using word as the basic unit.

tidy_macbeth <- macbeth |> tidytext::unnest_tokens(word, Text)

head(tidy_macbeth,20)

Play_Line section word

1 1 11 when

2 1 11 shall

3 1 11 we

4 1 11 three

5 1 11 meet

6 1 11 again

7 2 11 in

8 2 11 thunder

9 2 11 lightning

1802 27 Text Analysis and Text Mining

10 2 11 or

11 2 11 in

12 2 11 rain

13 3 11 when

14 3 11 the

15 3 11 hurlyburly’s

16 3 11 done

17 4 11 when

18 4 11 the

19 4 11 battle’s

20 4 11 lost

At this point, we get a sentiment score for each word using the BING

lexicon (words that don’t appear in the lexicon are assumed to be

neutral).

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING)

head(macbeth_SA)

Play_Line section word sentiment

1 4 11 lost negative

2 4 11 won positive

3 12 11 fair positive

4 12 11 foul negative

5 12 11 foul negative

6 12 11 fair positive

Next, we count the positive and negative words in each grouping of

𝐿 = 30 lines of text, say.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment)

head(macbeth_SA)

index sentiment n

1 0 negative 11

2 0 positive 10

3 1 negative 12

4 1 positive 10

5 2 negative 17

6 2 positive 11

The counts are stored in the variable n. We reshape the tibble into a tidy
dataset, one for which each column hosts 1 variable, and each row, 1

observation.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0)

head(macbeth_SA)

27.4 Examples 1803

index negative positive

1 0 11 10

2 1 12 10

3 2 17 11

4 3 7 2

5 4 7 14

6 5 8 9

Finally, we compute the overall sentiment for each block of lines as the

difference between its positive and negative term counts.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

head(macbeth_SA)

index negative positive sentiment

1 0 11 10 -1

2 1 12 10 -2

3 2 17 11 -6

4 3 7 2 -5

5 4 7 14 7

6 5 8 9 1

That’s it! – although it might be more meaningful to plot the results.

library(ggplot2)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()

1804 27 Text Analysis and Text Mining

The overall picture seems to be somewhat negative – but is that surprising?

Macbeth is a tragedy, after all, arguably Shakespeare’s darkest. Perhaps

what we’re seeing is an artifact of the way we have blocked (grouped)

the play, or of the length of the blocks, or even of the sentiment lexicon

that we’ve elected to use. We look into this a little bit more.

Smaller Number of Blocks What happens if we use 𝐿 = 50 instead of

𝐿 = 30?

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = Play_Line %/% 50, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()

There isn’t much of a difference.

Different Blocking Mechanism We could use Act and Scene as sepa-

ration instead of an arbitrary number of lines 𝐿.

macbeth_SA <- tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(index = section, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

ggplot(macbeth_SA, aes(index, sentiment)) + geom_col()

27.4 Examples 1805

Acts II, IV, and V are pretty bleak, seems like...

Different Lexicons We go back to 𝐿 = 30 and run term-by-term senti-

ment analysis for the four lexicons.

afinn_macbeth <- tidy_macbeth |> dplyr::inner_join(AFINN) |>

dplyr::group_by(index = Play_Line %/% 30) |>

dplyr::summarise(sentiment = sum(value)) |> dplyr::mutate(method = "AFINN")

bing_nrc_loughran_macbeth <- dplyr::bind_rows(

tidy_macbeth |>

dplyr::inner_join(BING) |>

dplyr::mutate(method = "BING"),

tidy_macbeth |>

dplyr::inner_join(NRC |> dplyr::filter(sentiment %in% c("positive","negative"))) |>

dplyr::mutate(method = "NRC"),

tidy_macbeth |>

dplyr::inner_join(LOUGHRAN |> dplyr::filter(sentiment %in% c("positive","negative"))) |>

dplyr::mutate(method = "LOUGHRAN")) |>

dplyr::count(method, index = Play_Line %/% 30, sentiment) |>

tidyr::spread(sentiment, n, fill = 0) |>

dplyr::mutate(sentiment = positive - negative)

library(ggplot2)

dplyr::bind_rows(afinn_macbeth, bing_nrc_loughran_macbeth) |>

ggplot(aes(index, sentiment, fill = method)) +

geom_col(show.legend = FALSE) +

facet_wrap(~method, ncol = 1, scales = "free_y")

1806 27 Text Analysis and Text Mining

With BING and LOUGHRAN, the “tragedy” of Macbeth is “preserved”,

but that pattern is not as obvious with AFINN and NRC (although there

is plenty of negative sentiment in those two as well).

Perhaps we should question the wisdom of using modern lexicons on

450 year old plays?

Text Visualizations Finally, we can also look at how often specific

words contribute to positive and negative sentiments in the text of the

play, using the BING lexicon.

bing_word_counts <- tidy_macbeth |>

dplyr::inner_join(get_sentiments("bing")) |>

dplyr::count(word, sentiment, sort = TRUE) |> dplyr::ungroup()

27.4 Examples 1807

library(ggplot2)

#bar charts

bing_word_counts |>

dplyr::group_by(sentiment) |> # will create 2 graphs

dplyr::top_n(10) |> # pick only the top 10 in each category

dplyr::ungroup() |> # required to avoid a warning message below

dplyr::mutate(word = reorder(word, n)) |>

ggplot(aes(word, n, fill = sentiment)) + # plot a bar chart of word count

geom_col(show.legend = FALSE) +

facet_wrap(~sentiment, scales = "free_y") + # there will 2 such bar charts

labs(y = "Contribution to sentiment",x = NULL) +

coord_flip() # horizontal bar charts

wordcloud

word = c("thou", "thy", "thee", "tis", "hath")

lexicon = rep("custom",5)

custom2 = data.frame(word,lexicon)

stop_words_custom_macbeth = rbind(tidytext::stop_words,custom2)

tidy_macbeth |> dplyr::anti_join(stop_words_custom_macbeth) |>

dplyr::count(word) |>

with(wordcloud::wordcloud(word, n, max.words = 100))

comparison cloud

tidy_macbeth |> dplyr::inner_join(BING) |>

dplyr::count(word, sentiment, sort = TRUE) |> # counting words for the whole play

reshape2::acast(word ~ sentiment, value.var = "n", fill = 0) |> # reshaping as a matrix

wordcloud::comparison.cloud(colors = c("#660000", "#000066"), max.words = 100)

Nothing should jump at us as being amiss – which is no guarantee that

there’s no problem, but it’s at least a good sign.

Notes and Comments We see that the choice of lexicon and of the

blocking window may have an impact on the sentiment analysis outcome.

This is aligned with data anlaysis as we have seen it so far: it’s easy to

run a sentiment analysis (a few lines of code at most), but it’s difficult to

pick (or build) the right window and the right lexicon.

1808 27 Text Analysis and Text Mining

27.4.7 Regular Expressions

(This section is a repeat of 16.6.4)

Regular expressions can be used to achieve to extract relevant information

from reams of data. Among this mostly unstructured data lurk systematic
elements, which can be used to help the automation process, especially

if quantitative methods are eventually going to be applied to the scraped

data.

Systematic structures include numbers, names (countries, etc.), addresses

(mailing, e-mailing, URLs, etc.), specific character strings, etc. Regular

expressions (regexps) are abstract sequences of strings that match concrete

recurring patterns in text; they allow for the systematic extraction of the

information components from plain text, HTML, and XML.

The examples in this section are based on [23].

Initializing the Environment

The Python module for regular expressions is re.

import re

Let us take a quick look at some basics, through the re method match().

We can try to match a pattern from the beginning of a string, as below:

re.match(’super’,’supercalifragilisticexpialidocious’)

<re.Match object; span=(0, 5), match=’super’>

No such match occurs in the following chunk of code, however.

re.match(’super’,’Supercalifragilisticexpialidocious’)

The regular expression pattern (more on this in a moment) for “word” is

\w+. The following bit of code would match the first word in a string:

w_regex = ’\w+’

re.match(w_regex,’Hello World!’)

<re.Match object; span=(0, 5), match=’Hello’>

27.4 Examples 1809

Common Regular Expression Patterns

A regular expression pattern is a short form used to indicate a type of

(sub)string:

\w+: word

\d: digit

\s: space

.: wildcard

+ or *: greedy match

\W: not word

\D: not digit

\S: not space

[a-z]: lower case group

[A-Z]: upper case group

There are a few re functions which, combined with regexps, can make it

easier to extract information from large, unstructured text documents:

split(): splits a string on a regexp;

findall(): finds all substrings matching a regexp in a string;

search(): searches for a regexp in a string, and

match(): matches an entire string based on a regexp

Each of these functions takes two arguments: a regexp (first) and a string
(second). For instance, we can split a string on the spaces (and remove

them):

re.split(’\s+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split?’]

The \ in the regexp above is crucial. The following code splits the sentence

on the s (and removes them):

re.split(’s+’,’Can you do the split?’)

[’Can you do the ’, ’plit?’]

We can also split on single spaces and remove them:

re.split(’\s’,’Can you do the split?’)

[’Can’, ’’, ’you’, ’do’, ’the’, ’split?’]

Alternatively, we can also split on the words and remove them:

re.split(’\w+’,’Can you do the split?’)

[’’, ’ ’, ’ ’, ’ ’, ’ ’, ’?’]

Or better yet, split on the non-words and remove them:

1810 27 Text Analysis and Text Mining

re.split(’\W+’,’Can you do the split?’)

[’Can’, ’you’, ’do’, ’the’, ’split’, ’’]

Let us take some time to study a silly sentence, saved as a string.

test_string = ’Oh they built the built the ship Titanic.

It was a mistake. It cost more than 1.5 million dollars.

Never again!’

test_string

’Oh they built the built the ship Titanic. It was a mistake.

It cost more than 1.5 million dollars. Never again!’

In English, only three characters can end a sentence: ., ?, !.
46

We create46: Apparently, nobody’s heard of the in-

terrobang...
a regexp group (more on those in a moment) as follows:

47

47: In Python, regular expression patterns

must be prefixed with an r to differentiate

between the raw string and the string’s
interpretation.

sent_ends = r"[.?!]"

We could then split the string into its constituent sentences:

print(re.split(sent_ends,test_string))

[’Oh they built the built the ship Titanic’, ’ It was a mistake’,

’ It cost more than 1’, ’5 million dollars’, ’ Never again’, ’’]

If we wanted to know how many such sentences there were, we simply

use the len() function:

print(len(re.split(sent_ends,test_string)))

6

The regexp range consisting of words with an uppercase initial letter is

easy to build:

cap_words = r"[A-Z]\w+" # Upper case characters

We can find all such words (and how many there are in the string)

through:

print(re.findall(cap_words,test_string))

print(len(re.findall(cap_words,test_string)))

[’Oh’, ’Titanic’, ’It’, ’It’, ’Never’]

5

The regexp for spaces is:

27.4 Examples 1811

spaces = r"\s+" # spaces

We can then split the string on spaces, and count the number of tokens
(see Chapter 27, Text Analysis and Text Mining):

print(re.split(spaces,test_string))

print(len(re.split(spaces,test_string)))

[’Oh’, ’they’, ’built’, ’the’, ’built’, ’the’, ’ship’, ’Titanic.’,

’It’, ’was’, ’a’, ’mistake.’, ’It’, ’cost’, ’more’, ’than’, ’1.5’,

’million’, ’dollars.’, ’Never’, ’again!’]

21

The regexp for numbers (contiguous strings of digits) is:

numbers = r"\d+"

We can find all the numeric characters using:

print(re.findall(numbers,test_string))

print(len(re.findall(numbers,test_string)))

[’1’, ’5’]

2

The main difference between search() and match() is that match() tries

to match from the beginning of a string, whereas search() looks for a

match anywhere in the string.

Regular Expressions Groups ‘()‘ and Ranges ‘[]‘ With OR ‘|‘

We can create more complicated regexps using groups, ranges, and/or

“or” statements:

[a-zA-Z]+: an unlimited number of lower and upper case En-

glish/French (unaccented) letters;

[0-9]: the digits from 0 to 9;

[a-zA-Z'\.\-]+: any combination of lower and upper case En-

glish/French (unaccented) letters, ', ., and -;

(a-z): the characters a, -, and z;

(\s+|,): any number of spaces, or a comma;

(\d+|\w+): words or numerics.

For instance, consider the following text string and regexps groups:

text = ’On the 1st day of xmas, my boat sank.’

numbers_or_words = r"(\d+|\w+)"

spaces_or_commas = r"(\s+|,)"

This next chunk of code does exactly what one would expect:

1812 27 Text Analysis and Text Mining

print(re.findall(numbers_or_words,text))

[’On’, ’the’, ’1’, ’st’, ’day’, ’of’, ’xmas’, ’my’, ’boat’, ’sank’]

What about this one?

print(re.findall(spaces_or_commas,text))

[’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’,’, ’ ’, ’ ’, ’ ’]

27.4.8 Movie Reviews

"This is a failure of epic proportions. You’ve got to be a genius

to make a movie this bad." (J. Seigel’s review of The Bonfire of
the Vanities)

In this section, we will re-visit sentiment analysis, this time using Python

and the Natural Language Toolkit (NLTK).
48

48: See Chapter 32 for more examples of

NLTK in action.

Our goal is to develop a sentiment analysis model for movie reviews.

The dataset contains 50,000 movie reviews labeled as either positive or

negative. With an accurate sentiment model, we’ll have the ability to

automatically classify new reviews in order to aggregate review data.

Dataset Information

TheLarge Movie Review Dataset v1.0 is described in [36] – the details

below are taken verbatim from the same source (the data is also available

in the R package textdata, in the object dataset_imdb).

Overview This dataset contains movie reviews along with their as-

sociated binary sentiment polarity labels. It is intended to serve as a

benchmark for sentiment classification. This document outlines how the

dataset was gathered, and how to use the files provided.

Dataset The core dataset contains 50,000 reviews split evenly into 25K

train and 25K test sets. The overall distribution of labels is balanced

(25K pos and 25K neg). We also include an additional 50,000 unlabeled

documents for unsupervised learning.

In the entire collection, no more than 30 reviews are allowed for any

given movie because reviews for the same movie tend to have correlated

ratings. Further, the training and test sets contain a disjoint set of movies,

so no significant performance is obtained by memorizing movie-unique

terms and their associated with observed labels. In the labeled train/test

sets, a negative review has a score ≤ 4 out of 10, and a positive review

has a score ≥ 7 out of 10. Thus reviews with more neutral ratings are not

included in the train/test sets. In the unsupervised set, reviews of any

rating are included and there are an even number of reviews > 5 and

≤ 5.

27.4 Examples 1813

Files There are two top-level directories [train/, test/] corresponding

to the training and test sets. Each contains [pos/, neg/] directories for the

reviews with binary labels positive and negative. Within these directories,

reviews are stored in text files named following the convention [[id]_-

[rating].txt] where [id] is a unique id and [rating] is the star rating

for that review on a 1-10 scale. For example, the file [test/pos/200_-

8.txt] is the text for a positive-labeled test set example with unique id

200 and star rating 8/10 from IMDb. The [train/unsup/] directory has

0 for all ratings because the ratings are omitted for this portion of the

dataset.

Preamble

We first need to import the appropriate Python modules. For this exercise,

we’ll use NLTK.

The stemmer() and tokenize() functions are used for text processing.

The vader lexicon is used to analyze the intensity of the sentiments.

import nltk

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews

from nltk.sentiment import SentimentAnalyzer

from nltk.sentiment.util import mark_negation, extract_unigram_feats

from nltk.tokenize import word_tokenize, sent_tokenize

from nltk.stem.lancaster import LancasterStemmer

stemmer = LancasterStemmer()

import glob

data_path = ’Data/aclImdb/’

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn import metrics

from nltk.sentiment.vader import SentimentIntensityAnalyzer

nltk.download(’all’)

Data Preparation

The reviews are individually stored in text files, and there are four folders

for every combination of training/test and positive/negative.

train_docs = []

train_labels = []

pos_file_names = glob.glob(’{}train/pos/*.txt’.format(data_path))

for file_name in pos_file_names:

train_docs.append(open(file_name).read())

train_labels.append(1)

1814 27 Text Analysis and Text Mining

neg_file_names = glob.glob(’{}train/neg/*.txt’.format(data_path))

for file_name in neg_file_names:

train_docs.append(open(file_name).read())

train_labels.append(0)

The names of the positive reviews are found in an array, just as the names

of the negative reviews are.

pos_file_names

[’Data/aclImdb/train/pos/0_9.txt’,

’Data/aclImdb/train/pos/10000_8.txt’,

’Data/aclImdb/train/pos/10001_10.txt’,

’Data/aclImdb/train/pos/10002_7.txt’,

...]

We read-in a (random) sample negative review, for the movie Haunted
Boat, whose file number is 3446_1.txt. The ’_1’ in the file title lets us

know that this is a 1-star review. Does the text support the rating?

sample_text_neg = open(’{}train/neg/3446_1.txt’.format(data_path)).read()

print(sample_text_neg)

This film on paper looked like it could possibly be good, after watching though i realised

that this film was completely terrible!! The plot has no meaning, and i think i counted the

best part of 5000 cut scenes each one making the film more annoying boring and ridiculous. I

watched this late night pitch black no noise at all just to add to the SCARINESS of it but

the truth is the only thing that scared me was the music, what they would call tragic music,

they play opera i mean be serious!! This film sums up all of what is not good about this type

of film. To be honest ill say no more but watch at your own risk this film is just complete

rubbish, ENJOY!!

Next, we read-in a positive review, now, for a movie called The Night
Listener, whose file number is 10015_8.txt. This review is supposed to

be an 8-star review – does the text support the rating?

sample_text_pos = open(’{}train/pos/10015_8.txt’.format(data_path)).read()

print(sample_text_pos)

Popular radio storyteller Gabriel No one(Robin Williams,scraggy and speaking in hushed,

hypnotic tones) becomes acquainted and friends with a fourteen-year-old boy from Wisconsin

named Pete Logand(Rory Culkin),who has written a book detailing sexual abuse from his parents.

To boot,Pete has AIDS and this compels Gabriel further still,since his partner Jess(Bobby

Cannavale, good)happens to be a survivor of HIV himself.

He also acquaints himself

with Pete’s guardian,a woman named Donna(Toni Collette, brilliant!)and when Gabriel decides he

wants to meet and talk to the two of them in person and goes to Wisconsin, [...]

Bag-of-Words Processing

We will be using a BoW model, so let’s explore how we could tokenize

(that is, separate) the text into words (the tokens).

27.4 Examples 1815

First, to split a review into sentences we can use the standard sent_-

tokenize() function from NLTK. For instance, the following piece of

code will extract the 4th sentence that the tokenizer recognizes (in Python,

indexing starts with 0).

sample_sent = sent_tokenize(sample_text_neg)[3]

print(sample_sent)

This film sums up all of what is not good about this type of film.

We can also try the word_tokenize() function to split into words, and

do a stemming operation (finding the roots) to normalize word forms.

The following code will stem all the words in the sample_sent sentence

from above.

sample_words = [stemmer.stem(word)

for word in word_tokenize(sample_sent)]

print(sample_words)

[’thi’, ’film’, ’sum’, ’up’, ’al’, ’of’, ’what’, ’is’, ’not’,

’good’, ’about’, ’thi’, ’typ’, ’of’, ’film’, ’.’]

One serious problem with a bag of words approach, especially for

sentiment analysis, is that the presence of negative/positive words does

not imply negative/positive sentiment if the words are negated in the

sentence (e.g., "not bad" actually means "good" even though in general

an occurrence of "bad" means "bad").

NLTK includes the function mark_negation() which takes a tokenized

sentence and marks negated words with a ’_NEG’ suffix. Specifically, it

marks all words that come after a negation word and before the next

punctuation mark. Now ’good’ becomes the word ’good_NEG’ so a BoW

model can pick up on the context of the word.
49

49: More on this topic in Chapter 32.

mark_negation(sample_words)

[’thi’,

’film’,

’sum’,

’up’,

’al’,

’of’,

’what’,

’is’,

’not’,

’good_NEG’,

’about_NEG’,

’thi_NEG’,

’typ_NEG’,

’of_NEG’,

’film_NEG’,

’.’]

1816 27 Text Analysis and Text Mining

Here is the complete tokenizer function:

1. it tokenizes the text into sentences;

2. for each tokenized sentence, it tokenizes it into words;

3. it keeps only those words of length ≥ 2;

4. it stems the words to only retain the roots, and

5. it marks the negation of certain words.

def tokenizer(text):

sents = sent_tokenize(text)

tokens = []

for sent in sents:

words = word_tokenize(sent)

words = [word for word in words if len(word) >= 2]

words = [stemmer.stem(word) for word in words]

words = mark_negation(words)

tokens += words

return tokens

Now that we have a tokenizer, we can use standard feature extraction

methods to get feature vectors for each document.

We use the scikit-learn module for the rest of the feature extraction

and training; it contains TfidfVectorizer class which allows us to define

a custom tokenizer and returns a TFIDF matrix.
50

50: We use this class to convert all of the

training documents to DTM feature vec-

tors, using the tokenizer defined above

(this step can take a few minutes to run).
vectorizer = TfidfVectorizer(min_df=1, tokenizer=tokenizer)

train_matrix = vectorizer.fit_transform(train_docs)

We can explore the matrix to get an idea of what it contains. It should

contain 25,000 documents (as per the introduction), but how many

features have been retained?

train_matrix.shape

(25000, 105350)

A fair number, as it happens: 25,000 documents and 105,494 features. We

can also find the non-zero entries among a subset of the DTM matrix,

but that doesn’t give us much information at this stage (it will only print

the non-zero entries, but we don’t know what the features are).

print(train_matrix[0:9,0:9])

(0, 2) 0.0553631491077

(1, 3) 0.0250716608331

(2, 2) 0.0341384144135

(4, 2) 0.100478224693

(7, 2) 0.141603801927

(7, 3) 0.0266220723609

27.4 Examples 1817

Multinomial Naïve Bayes

Multinomial naïve Bayes (MultinomialNB()) is one of various classifi-

cation models in scikit-learn (if we wanted to find the best possible

classifier, we’d have to try some of the others, but at this stage we just

want to show you how the sentiment analysis works).

The fit function takes the feature matrix as well as the vector of labels

we made when we read the data files.

model = MultinomialNB().fit(train_matrix, train_labels)

Now that we’ve trained a model, we can try it out on a 1-star review (but

we pick a review in the test set to avoid overfitting).

neg_sample_text = open(

’{}test/neg/9999_1.txt’.format(data_path)).read()

print(neg_sample_text)

When all we have anymore is pretty much reality TV shows with people making fools of

themselves for whatever reason be it too fat or can’t sing or cook worth a damn than I

know Hollywood has run out of original ideas. I can not recall a time when anything original

or intelligent came out on TV in the last 15 years. What is our obsession with watching

bums make fools of themselves? I would have thought these types of programs would have

run full circle but every year they come up with something new that is more strange

then the one before. OK so people in this one need to lose weight...most Americans need

to lose weight. I just think we all to some degree enjoy watching people humiliated.

Maybe it makes us feel better when we see someone else looking like a jerk. I don’t know

but I just wish something intelligent would come out that did not insult your intelligence.

The overall sentiment seems fairly negative. Let’s see if our model agrees

by computing the class probabilities (negative first, then positive).

neg_sample_vec = vectorizer.transform([neg_sample_text])

model.predict_proba(neg_sample_vec)

array([[0.81292637, 0.18707363]])

That seems fairly conclusive. Now let’s do the same thing for a 10-star

movie review in the test set.

pos_sample_text = open(

’{}test/pos/9999_10.txt’.format(data_path)).read()

print(pos_sample_text)

Although I’m not a golf fan, I attended a sneak preview of this movie and absolutely loved it. The

historical settings, the blatant class distinctions, and seeing the good and the bad on both sides

of the dividing line held my attention throughout. The actors and their characterizations were

all mesmerizing. And I was on the edge of my seat during the golf segments, which were not only

dramatic and exciting but easy to follow. Toward the end of this movie, "Seabiscuit" came strongly

to mind, although "The Greatest Game Ever Played" is far less complex a story than that film.

In both cases, the fact that the events really happened deepened my interest.

1818 27 Text Analysis and Text Mining

We would expect this review to be fairly clearly positive, based on the

text alone. What does the model say?

pos_sample_vec = vectorizer.transform([pos_sample_text])

model.predict_proba(pos_sample_vec)

array([[0.33913831, 0.66086169]])

The class probabilities are closer to one another than with the previous

test review, but the positive sentiment is strongest, which is a good sign.

Even though it’s not from a review, let’s see how the model would deal

with a tricky sentence with a "not" in it.

stuff = vectorizer.transform(

[’A ten pound laptop is not a good travel companion.’])

model.predict_proba(stuff)

array([[0.5583131, 0.4416869]])

We don’t have the greatest confidence in the prediction, but it yields the

correct classification.

Performance Evaluation

But it’s not enough to try out the sentiment analysis on 1 or 2 reviews: we

need to know how well the model performs on the 25,000 test cases?

We’ll need to load the test documents before we can compute some

evaluation metrics.

test_docs = []

test_labels = []

pos_file_names = glob.glob(’{}test/pos/*.txt’.format(data_path))

for file_name in pos_file_names:

test_docs.append(open(file_name).read())

test_labels.append(1)

neg_file_names = glob.glob(’{}test/neg/*.txt’.format(data_path))

for file_name in neg_file_names:

test_docs.append(open(file_name).read())

test_labels.append(0)

We get the feature vectors for the test data and the model’s predic-

tions. Note that we use transform() on testing data rather than fit_-

transform().

test_matrix = vectorizer.transform(test_docs)

predicted = model.predict(test_matrix)

27.4 Examples 1819

We can evaluate the precision, the recall, and the 𝐹1−score on the test

set. Precision is the fraction of predicted positive results that are actually

true positives, whereas recall is the proportion of true positives that are

recognized as such by the classification model. Ideally, both of these

values would be near 1.

The F1-score is the harmonic mean of these quantities.

print(metrics.classification_report(

test_labels, predicted, target_names=[’neg’, ’pos’]))

precision recall f1-score support

neg 0.77 0.87 0.82 12500

pos 0.85 0.74 0.79 12500

avg / total 0.81 0.81 0.80 25000

The performance metrics are actually quite good!

Vader

NLTK comes with a pre-trained sentiment analyzer called vader. Pre-

trained in this context means that it has been trained on a dataset that

does not necessarily contain positive and negative movie reviews.

We’ll see how it performs on the testing set, but first we’ll try it on the

trick sentence from above.

sia = SentimentIntensityAnalyzer()

sia.polarity_scores(’A ten pound laptop is not a good travel companion.’)

{’compound’: -0.3412, ’neg’: 0.256, ’neu’: 0.744, ’pos’: 0.0}

We see that vaderwasn’t fooled: it recognizes that it’s likely to be a neutral

sentence, or possibly a negative sentence, but not a positive sentence.

To evaluate on the test data, we find the prediction for each test document,

and load them into classification_report (remember that it hasn’t

been trained on the movie review data).

vader_predicted = []

for doc in test_docs:

scores = sia.polarity_scores(doc)

if scores[’pos’] > scores[’neg’]:

vader_predicted.append(1)

else:

vader_predicted.append(0)

We get the following performance metrics.

1820 27 Text Analysis and Text Mining

print(metrics.classification_report(

test_labels, vader_predicted, target_names=[’neg’, ’pos’]))

precision recall f1-score support

neg 0.79 0.52 0.63 12500

pos 0.64 0.86 0.74 12500

avg / total 0.72 0.69 0.68 25000

It is not surprising to see that the results are not quite as good, as the

model has not been trained on movie reviews. Still, it is not the worst

model in the world.

27.5 Exercises

1. How important are visual cues in communications and business negotiations? How important is context?

How easy is it to learn from someone whose context is different from yours (culturally AND professionally)?

2. Conduct a BoW analysis of the Ottawa Senators’ 2016-2017 NHL season (as in Section 27.4.1) using the

fields SSS_Recap and/or OPP_Recap.

3. Conduct a BoW analysis of the Ottawa Senators’ 2016-2017 NHL season (as in Section 27.4.1) using the

fields AP_Headline, SSS_Headline, and/or OPP_Title.

4. Identify the plays linked to each Gutenberg Project ID in Section 27.4.2.

5. Build a Shakespeare word cloud for the Marlowe NAs, and vice-versa, as found in Section 27.4.2.

6. Re-run the relevant analyses of Section 27.4.2 after having cleaned the datasets of theatre instructions

(exit, exeunt, enter, scene, act, folio, dramatis, personae, etc.) and of copyright/licensing information and/or

modern contaminating terms, and with a slightly more restrictive list of early modern english stopwords,

removing ancient spelling conventions (“haue” instead of “have”, “goode” instead of “good”, etc.).

7. Conduct a count of bigrams per play with the Shakespeare corpus of Section 27.4.2.

8. Find the most common title of nobility in each of the Shakespeare plays of Section 27.4.2.

9. Re-run the 𝑛−gram code of Section 27.4.2 for 𝑛 = 3.

10. Create a classifier for real news/fake news, as in Section 27.4.4, using the fake_or_real_news1_utf8.csv

file (found in the usual location).

11. Conduct the cluster analysis of Section 27.4.5 using stricter sparsity levels: 90%, 95%, 99%.

12. Conduct a cluster analysis on the data of Section 27.4.5 using the tf-idf weightings (without removing

"Ottawa" or "Senators" from the cleaned up recap, using the following as a starting point.

Apply tf-idf weighting

AP.recaps.tfidf_tdm.1 = tmLLTermDocumentMatrix(clean_corp.AP.recaps.1,

control=list(weighting=weightTfIdf))

Remove sparse terms

AP.recaps.tfidf_tdm.1 <- tm::removeSparseTerms(AP.recaps.tfidf_tdm.1,sparse=.7)

13. Conduct the cluster analyses of Section 27.4.5 using a DTM instead of a TDM (in essence, finding similar

games during the 2016-2017 season).

14. Conduct the cluster analyses of Section 27.4.5 using 𝑘−means instead of hierarchical clustering.

15. Run a sentiment analysis of Macbeth for categories of sentiments other than positive or negative.

16. Run a sentiment analysis of Trump’s tweets in the BOTUS case study.

17. Run a sentiment analysis of the field SSS_Recap from the Senators game recap example.

Chapter References 1821

Chapter References
[1] C.C. Aggarwal and C.X. Zhai. Text Classification. CRC Press, 2015.

[2] M.M. Alvarez. ‘Can Machine Learning and AI Help Solving the Fake News Problem ’. In: The Practical
Academic 12 (2017).

[3] D.C. Anastasia, A. Tagarelli, and G. Karypis. Document Clustering: The Next Frontier. CRC Press, 2014.

[4] C. Arthur. ‘The big bang visualisation of the top 140 Twitter influencers ’. In: The Guardian 13 (Sept.

2010).

[5] T. Basu. NPR’s Fascinating Plan to Use A.I. on Trump’s Tweets .

[6] BBC’s 60 Seconds Shakespeare. ‘Teachers Themes List ’.

[7] D. Bevington, ed. The Complete Works of Shakespeare. 5th. Longman, 2003.

[8] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly, 2009.

[9] P. Boily, S. Davies, and J. Schellinck. The Practice of Data Visualization . Data Action Lab, 2023.

[10] D. Carnegie and G Taylor, eds. The Quest for Cardenio: Shakespeare, Fletcher, Cervantes, and the Lost Play.

Oxford University Press, 2012.

[11] Twitter Counter. ‘Top 100 Most Followed Twitter Accounts ’.

[12] K. Dailey. ‘History of Cardenio: Is Shakespeare’s Lost Work Recovered? ’. In: BBC News 12 (2012),

p. 2017.

[13] N. Dieker. ‘Planet Money’s BOTUS Bot Has Yet to Make a Single Stock Trade’. In: 12 (Sept. 2017), p. 2017.

[14] Forbes. ‘The World’s Biggest Public Companies List - Forbes 2000 ’.

[15] A. Goldmark. 763: BOTUS .

[16] S. Greenstone. When Trump Tweets, This Bot Makes Money .

[17] InvestorGuide.com . ‘List of Publicly Traded Companies ’.

[18] ‘Company List: NASDAQ, NYSE, & AMEX Companies ’. Sept. 2017.

[19] ‘Cardenio Play: Overview and Resources ’.

[20] N. Ide and J. Veronis. ‘Introduction to the special issue on word sense disambiguation: the state of the

art’. In: Computational Linguistics 24 (1998), pp. 2–40.

[21] M. Ingram. Here’s What a Trump Tweet Does to a Company’s Share Price .

[22] K. Jarmul. Detecting Fake News with Scikit-Learn .

[23] K. Jarmul. Natural Language Processing Fundamentals in Python.

[24] M.L. Jockers. Text Analysis with R for Students of Literature. Springer, 2014.

[25] D. Jurafsky and J.H. Martin. Speech and Language Processing (2nd ed). Pearson, 2009.

[26] T. Kwartler. Text Mining: Bag of Words .

[27] D. Lee. How Twitter Changed the World, Hashtag-by-Hastag .

[28] A. Long et al. The Complete Works of William Shakespeare (Abridged): Acting Edition. Applause, 1987.

[29] G. McIntire. Fake/Real News Dataset .

[30] G. McIntire. On Building a “Fake News” Classification Model .

[31] K. Mettler. ‘‘Trump and Dump’: When POTUS tweets and stocks fall, this animal charity benefits ’.

In: Washington Post 19 (Sept. 2017).

[32] Y. Miyao. Enju syntactic parser .

[33] M. Murray. Topic Modelling Financial News with Natural Language Processing .

[34] M. Murray. Topic Modelling Financial News Dataset .

[35] M. Ogneva. ‘How Companies Can Use Sentiment Analysis to Improve Their Business ’. In: Mashable
(2010).

https://miguelmalvarez.com/2017/03/23/how-can-machine-learning-and-ai-help-solving-the-fake-news-problem
https://www.theguardian.com/technology/blog/2010/may/24/twitter-influencers-visualisation
https://www.inverse.com/article/30149-npr-planet-money-bot-botus-donald-trump
http://www.bbc.co.uk/drama/shakespeare/60secondshakespeare/teachers_themes_list.shtml
https://practicedataviz.com
https://twittercounter.com/pages/100
http://www.bbc.com/news/magazine-18010384
http://www.bbc.com/news
https://www.forbes.com/global2000/list/
http://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
http://www.npr.org/2017/02/04/513469456/when-trump-tweets-this-bot-makes-money
http://www.investorguide.com
http://www.investorguide.com/stock-list.php
http://www.nasdaq.com/screening/company-list.aspx
http://www.nosweatshakespeare.com/cardenio-play/
http://fortune.com/2017/02/24/trump-tweet-stocks/
https://www.datacamp.com/community/tutorials/scikit-learn-fake-news
https://www.datacamp.com/courses/intro-to-text-mining-bag-of-words
http://www.bbc.com/news/technology-24802766
https://github.com/GeorgeMcIntire/fake_real_news_dataset
https://opendatascience.com/blog/how-to-build-a-fake-news-classification-model/
https://www.washingtonpost.com/news/morning-mix/wp/2017/01/31/trump-and-dump-when-potus-tweets-and-stocks-fall-this-animal-charity-benefits/
http://www.nactem.ac.uk/enju/
http://mattmurray.net/topic-modelling-financial-news-with-natural-language-processing/
https://github.com/mattmurray/topic_modelling_financial_news
http://mashable.com/2010/04/19/sentiment-analysis

1822 27 Text Analysis and Text Mining

[36] Christopher Potts. ‘On the negativity of negation ’. In: Semantics and Linguistic Theory 20 (2010),

pp. 636–659.

[37] Sens rally after blowing lead, beat Leafs to gain on Habs . Associated Press. 2017.

[38] P. Shrivastava. ‘Text Classification: Applications and Use Cases ’. In: Parallel Dots (2017).

[39] J. Silge and D. Robinson. Text Mining with R: a Tidy Approach. O’Reilly, 2017.

[40] ‘Text Mining: Classification, Clustering, and Applications’. In: Chapman and Hall/CRC (2009). Ed. by

A.N. Srivastava and M. Sahami.

[41] Stanford Natural Language Processing Group. ‘The Stanford Parser: a statistical parser ’.

[42] T3. ‘Trump & Dump Bot: Analyzes Tweets, Short Stocks ’.

[43] A. Taylor, M. Marcus, and B. Santorini. ‘The Penn Treebank: An Overview’. In: Treebanks. Text, Speech
and Language Technology. Ed. by A. Abeillé. Springer, Dordrecht, 2003.

[44] Universal Dependencies. ‘Universal Dependencies v2 ’.

[45] A. Way and N. Gough. ‘Comparing Example-Based and Statistical Machine Translation’. In: Natural
Language Engineering 11 (2005), pp. 295–309.

[46] H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data .

O’Reilly, Jan. 2017.

[47] Wikipedia. ‘Natural Language Processing ’.

[48] Wikipedia. ‘Shakespeare Bibliography ’.

[49] M. Zhou. ‘Hamilton: A Text Analysis of the Federalist Papers ’. In: Medium (2017).

https://api.semanticscholar.org/CorpusID:15592981
http://cdn.espn.com/nhl/recap?gameId=400885257
http://blog.paralleldots.com/text-analytics/text-classification-applications-use-cases/
https://nlp.stanford.edu/software/lex-parser.shtml
https://www.t-3.com/works/the-trump-and-dump-bot/
http://universaldependencies.org
http://r4ds.had.co.nz/
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Shakespeare_bibliography
https://medium.com/@mattzhou/hamilton-a-text-analysis-of-the-federalist-papers-e64cb1764fbf

Mining Data Streams 28

1824 28 Mining Data Streams

28.1 Overview 1824
Motivating Examples . . . 1824
Basic Notions 1824
Data Stream Models . . . 1824
Link With Time Series Analy-

sis 1824
Software 1824

28.2Change Detection and Maintain-
ing Statistics 1824

Change Detection 1824
Maintaining Statistics . . 1824

28.3 Classification 1824
Basics and Challenges . . 1824
Approaches 1824
Evaluation 1824
Algorithms 1824

28.4 Clustering 1824
Basics and Challenges . . 1824
Approaches 1824
Evaluation 1824
Algorithms 1824

28.5 Frequent Itemset Mining 1824
28.6 Examples 1824

Maintaining Statistics . . 1824
Bloom Filter 1824
Sampling With a Reservoir 1824
Sampling With a Hash Func-

tion 1824
Fading Window 1824
Adaptive Sliding Window Algo-

rithm 1824
Partition Incremental Discretiza-

tion Algorithm 1824
Histogram Drift 1824

28.7 Exercises 1824

28.1 Overview

28.1.1 Motivating Examples

28.1.2 Basic Notions

28.1.3 Data Stream Models

28.1.4 Link With Time Series Analysis

28.1.5 Software

28.2 Change Detection and Maintaining
Statistics

28.2.1 Change Detection

Technical Framework

Learning Distributions

Concepts and Terminology

Drift Detection

28.2.2 Maintaining Statistics

ADWIN

PID

28.3 Classification

28.3.1 Basics and Challenges

28.3.2 Approaches

28.3.3 Evaluation

28.3.4 Algorithms

28.4 Clustering

28.4.1 Basics and Challenges

28.4.2 Approaches

28.4.3 Evaluation

28.4.4 Algorithms

28.5 Frequent Itemset Mining

28.6 Examples

28.6.1 Maintaining Statistics

28.6.2 Bloom Filter

28.6.3 Sampling With a Reservoir

28.6.4 Sampling With a Hash Function

28.6.5 Fading Window

28.6.6 Adaptive Sliding Window Algorithm

28.6.7 Partition Incremental Discretization Algorithm

28.6.8 Histogram Drift

28.7 Exercises

(Social) Network Data Analysis 29

	Data Understanding, Data Analysis, and Data Science Course Notes
	Queueing Models
	Background
	Terminology
	Theoretical Framework
	M/M/1 Queueing Systems
	M/M/c Queueing Systems
	Exercises
	Chapter References

	Bayesian Data Analysis
	Plausible Reasoning
	Simple Examples
	Prior Distributions
	Posterior Distributions
	Additional Topics
	Exercises
	Chapter References

	Anomaly Detection and Outlier Analysis
	Overview
	Quantitative Approaches
	Qualitative Approaches
	High-Dimensional Data
	Exercices
	Chapter References

	Text Analysis and Text Mining
	Introduction
	Basics of Text Analysis
	Text Mining Tasks
	Examples
	Exercises
	Chapter References

	Mining Data Streams
	Overview
	Change Detection and Maintaining Statistics
	Classification
	Clustering
	Frequent Itemset Mining
	Examples
	Exercises

	(Social) Network Data Analysis

