
12 ggplot2 Visualizations in R

12.1 ggplot2’s Grammar 235

Geometries and Aesthetics 236

Types of geoms 238

More About aes 242

12.2 ggplot2 Miscellenea 244

Facets 244

Multiple Graphs 245

Themes 246

Tidy Data 247

Saving Graphs 251

Summary 251

12.3 Examples 252

Algae Bloom Data 252

Gapminder Chart 260

Causes of Mortality 262

Conjugal Status Chart . . . 263

March to Moscow 265

Cholera Outbreak Map . . . 267

Census PUMS Data 268

ggplot2 Recipes 286

While R has become one of the world’s leading languages for statistical
and data analysis [1, ch.1], its plots are rarely of high-enough quality for
publication (see previous chapter). Enter Hadley Wickam’s ggplot2, an
aesthetically pleasing and logical approach to data visualization based on the
layered grammar of graphics (see Section 5.4). In this chapter, we introduce
ggplot2’s basic elements, and present some examples illustrating how it is
used in practice.

12.1 Basics of ggplot2’s Grammar

Four graphical systems are frequently used with R.

1. The base graphics system, written by R. Ihaka, is included in every R

installation.1

1: The graphs produced in Section 11, Basic
Visualizations in R, rely on base graphics
functions.

2. The grid graphics system, written by Paul Murrell in 2011, is imple-
mented through the gridpackage, which offers a lower-level alternative
to the standard graphics system. The user can create arbitrary rect-
angular regions on graphics devices, define coordinate systems for
each region, and use a rich set of drawing primitives to control the
arrangement and appearance of graphic elements.2

2: This flexibility makes grid a valuable
tool for software developers. But the grid
package doesn’t provide functions for pro-
ducing statistical graphics or complete
plots. As a result, it is rarely used directly
by data analysts and won’t be discussed
further (see Dr. Murrell’s Grid website).

3. The lattice package, written by D. Sarkar in 2008, implements trellis
graphs, as outlined by W.S. Cleveland [122]. Basically, trellis graphs
display the distribution of a variable or the relationship between
variables, separately for each level of one or more other variables. Built
using the grid package, the lattice package has grown beyond the
original approach to visualizing multivariate data and now provides a
comprehensive alternative system for creating statistical graphics in R.

4. Finally, the ggplot2 package, written by H. Wickham [123], provides a
system for creating graphs based on the grammar of graphics described
by L. Wilkinson [54] and expanded by Wickham [55]. The intention
of the ggplot2 package is to provide a comprehensive, grammar-
based system for generating graphs in a unified and coherent manner,
allowing users to create new and innovative data visualizations. The
power of this approach has led to ggplot2 becoming one of the most
common R data visualization tool.

http://mng.bz/C86p

236 12 ggplot2 Visualizations in R

Figure 12.1: Schematics of the grammar of ggplot2 graphics [124].

Access to the four systems differs: they are all included in the base installation,
except for ggplot2, and they must all be explicitly loaded, except for the
base graphics system.

As we saw previously, visualization involves representing data using various
elements, such as lines, shapes, colours, etc.. There is a structured relationship
– a mapping – between the variables in the data and their representation
in the displayed plot. We also saw that not all mappings make sense for all
types of variables, and (independently), that some representations are harder
to interpret than others.

ggplot2 provides a set of tools to map data to visual display elements and to
specify the desired type of plot, and subsequently to control the fine details of
how it will be displayed. Figure 12.1 shows a schematic outline of the process
starting from data, at the top, down to a finished plot at the bottom.

The most important aspect of ggplot2 is the way it can be used to think about
the logical structure of the plot. The code allows the user to explicitly state
the connections between the variables and the plot elements that are seen on
the screen – items such as points, colors, and shapes.

Geometries and Aesthetics

In ggplot2, the logical connections between the data and the plot elements are
called aesthetic mappings, or simply aesthetics, referred to as an aes. After
installing and loading the package, a plot is created by telling the ggplot()

function what the data is, and how the variables in this data logically map
onto the plot’s aesthetics.

The next step is to specify what sort of plot is desired (scatterplot, boxplot,
bar chart, etc), also known as a geom (short for “plot geometry”). Each geom

is created by a specific function:

geom_point() for scatterplots
geom_bar() for barplots
geom_boxplot() for boxplots,
and so on.

12.1 ggplot2’s Grammar 237

These two components are combined, literally adding them together in
an expression, using the “+” symbol. With these, ggplot2 has enough
information to draw a plot – the other components (see Figure 12.1) provide
additional design elements.

If no further details are specified, ggplot2 uses a set of sensible default

parameters; usually, however, the user will want to be more specific about,
say, the scales, the labels of legends and axes, and other guides that can
improve the plot readability.

These additional pieces are added to the plot in the same manner as the
geom_function() component, with specific arguments, again using the “+”
symbol. Plots are built systematically in this manner, piece by piece.

Let’s look at some illustrative ggplot2 code:

library(ggplot2)

theme_set(theme_bw()) # built-in minimalist theme

We create an artificial dataset.

d <- data.frame(x = c(1:8, 1:8),

y = runif(16),

group1 = rep(gl(2, 4, labels = c("a", "b")), 2),

group2 = gl(2, 8))

head(d)

ggplot(data=d) +

geom_point(aes(x, y, colour = group1)) +

facet_grid(~group2)

238 12 ggplot2 Visualizations in R

What is going on here? This basic display call contains the following ele-
ments:

ggplot(): creates a plotting object and specifies the data;
geom_point(): selects a scatter plot as the “geometry” (this is called a
“geom” in ggplot2 parlance);
aes(): specifies the “aesthetic” chart elements – a legend is automati-
cally created;
facet_grid(): specifies the “faceting” or panel layout of the chart.

Other components include statistics, scales, and annotation options. At a
bare minimum, charts require a dataset, some aesthetics, and a geometry,
combined, as above, with “+” symbols.

This non-standard approach has the advantage of allowing ggplot2 plots to
be proper R objects, which can modified, inspected, and re-used (and they
are compatible with the tidyverse and pipeline operations).

ggplot2’s main plotting functions are qplot() and ggplot(); qplot() is
short for “quick plot” and is meant to mimic the format of base R’s plot();
it requires less syntax for many common tasks, but has limitations – it’s
essentially a wrapper for ggplot(), which is not itself that complicated to
use. We will focus on this latter function.

Types of geoms

Whereas ggplot() specifies the data source and variables to be plotted,
the various geom functions specify how these variables are to be visually
represented (using points, bars, lines, and shaded regions).

There are currently 35+ available geometries. The tables below list the more
common ones, along with frequently used options (most of the graphs shown
in this report can be created using those geoms).

Table 12.1: Common ggplot2 geometries and options

Function Geometries Options

geom_bar() bar chart color, fill, alpha
geom_boxplot() boxplot color, fill, alpha, notch, width
geom_density() density plot color, fill, alpha, linetype
geom_histogram() histogram color, fill, alpha, linetype, binwidth
geom_hline() horizontal lines color, alpha, linetype, size
geom_line() jittered points color, size, alpha, shape
geom_jitter() line graph color, alpha, linetype, size
geom_point() scatterplot color, alpha, shape, size
geom_rug() rug plot color, side
geom_smooth() fitted line method, formula, color, fill, linetype, size
geom_text() text annotations many; see the help for this function
geom_violin() violin plot color, fill, alpha, linetype
geom_vline() vertical lines color, alpha, linetype, size

12.1 ggplot2’s Grammar 239

Table 12.2: Common ggplot2 geometries options

Option Specifies

color colour of points, lines, and borders around filled regions
fill colour of filled areas such as bars and density regions
alpha transparency of colors, ranging from 0 (fully transparent) to 1 (opaque)
linetype pattern for lines (1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash)
size point size and line width
shape point shapes (same as pch, with 0 = open square, 1 = open circle, 2 = open triangle, and so on)
position position of plotted objects such as bars and points; for bars, dodge places grouped bar charts

side by side, stacked, vertically stacks grouped bar charts, and fill, vertically stacks grouped
bar charts and standardizes their heights to be equal;
for points, jitter reduces point overlap

binwidth bin width for histograms
notch indicates whether boxplots should be notched (TRUE/FALSE)
sides placement of rug plots on the graph (b = bottom, l = left, t = top, r = right,

bl = both bottom and left, and so on)
width width of boxplots

As an example, the next bit of code produces a histogram of the heights of
singers in the 1979 edition of the New York Choral Society (Figure and a
display of height by voice part for the same data.

library(ggplot2)

data(singer, package="lattice")

ggplot(singer, aes(x=height)) + geom_histogram()

240 12 ggplot2 Visualizations in R

ggplot(singer, aes(x=voice.part, y=height)) + geom_boxplot()

From the second of those (the boxplots), it appears that basses tend to be
taller and sopranos tend to be shorter. Although the singers’ gender was not
recorded, it accounts for much of the variation seen in the diagram.

Note that only the x variable (height) was specified when creating the
histogram, but that both the x (voice part) and the y (height) variables were
specified for the boxplot – indeed, geom_histogram() defaults to counts on
the 𝑦−axis when no y variable is specified.33: Each function’s documentation con-

tains details and additional examples, but
there’s a lot of value to be found in playing
around with data in order to determine
the function’s behaviour.

We examine the use of some of these options using the Salaries dataset,
which contains information regarding the salaries of university professors
collected during the 2008–2009 academic year.

Salaries = read.csv("Salaries.csv", head=TRUE)

Variables include rank (AsstProf, AssocProf, Prof), sex (Female, Male),
yrs.since.phd (obvious), yrs.service (ditto), and salary (nine-month
salary in US dollars).

library(ggplot2)

ggplot(Salaries, aes(x=rank, y=salary)) +

geom_boxplot(fill="cornflowerblue", color="black",

notch=TRUE) +

geom_point(position="jitter", color="blue",

alpha=.5) +

geom_rug(sides="l", color="black")

12.1 ggplot2’s Grammar 241

The rank is out of order;4 as the salary usually increases with the rank, they 4: The progression should run from assis-
tant to associate to regular professor.can be re-ordered as follows:

ggplot(Salaries, aes(x=reorder(rank, salary), y=salary)) +

geom_boxplot(fill="cornflowerblue",color="black",

notch=TRUE) +

geom_point(position="jitter", color="blue",

alpha=.5) +

geom_rug(sides="l", color="black")

242 12 ggplot2 Visualizations in R

The chart displays notched boxplots of salary by academic rank. The actual
observations (teachers) are overlaid and given some transparency so they
don’t obscure the boxplots.

They are also jittered to reduce their overlap. Finally, a rug plot is provided
on the left to indicate the general spread of salaries. We see that the salaries
of assistant, associate, and full professors differ significantly from each other
(there is no overlap in the notches).

Additionally, the variance in salaries increases with greater rank, with a larger
range of salaries for full professors. In fact, at least one full professor earns
less than all assistant professors. There are also three full professors whose
salaries are so large as to make them outliers (as indicated by the black dots
in the boxplot to the right).

All in all, we have managed to extract a fair amount of insight from this
dataset via a fairly simple chart (and a fairly simple ggplot2 procedure).

More About aes

Aesthetics refer to the displayed attributes of the data. They map the data
to an attribute (such as the size or shape of a marker) and generate an
appropriate legend. Aesthetics are specified with the aes() function.

The aesthetics available for geom_point(), as an example, are:

x

y

alpha

color

fill

shape

size

ggplot() tries to accommodate the user who has never “suffered” through
base graphics before by using intuitive arguments like color, size, and
linetype, but ggplot() also accepts arguments such as col, cex, and lty.

The ggplot2 documentation explains what aesthetic options exist for each
geom (they’re generally self-explanatory).

Aesthetics can be specified within the data function or within a geom; if
they’re specified within the data function call then they apply to all specified
geoms in the call.

Note the important difference between specifying characteristics (like colour
and shape) inside and outside the aes() function: those inside it are assigned
characteristics automatically, based on the data. The characteristics defined
outside the aes() function are not mapped to the data.

The following example, using the mpg dataset, illustrates the difference.

12.1 ggplot2’s Grammar 243

ggplot(mpg, aes(cty, hwy)) +

geom_point(aes(colour = class))

ggplot(mpg, aes(cty, hwy)) +

geom_point(colour = "red")

That is all there is to it! (well, not entirely, as we will see in the next section...
but it’s close enough).

244 12 ggplot2 Visualizations in R

12.2 ggplot2 Miscellenea

A few concepts will help take the basic ggplot2 charts to the next level.

Facets

In ggplot2, small multiples
5 are referred to as facets, implemented as:5: The same chart, but plotted for various

subsets of the data.
facet_wrap()

facet_grid()

The former plots the panels in the order of the factor levels – when the end
of a row is reached, the display wraps to the next one.6 The grid layout6: The number of columns and rows can

be specified with nrow and ncol. facet_grid() produces a grid with explicit x and y positions; if there are no
observations in some of the factor levels, it produces an empty plot.

By default, the panels all share the same 𝑥 and 𝑦 axes. Note, however, that the
various 𝑦−axes are allowed to vary via facet_wrap(scales = "free_y"),
and that all axes are allowed to vary via facet_wrap(scales = free).

To specify the data frame columns that are mapped to the rows and columns
of the facets, separate them with a tilde. Usually, only a row or a column is
fed to facet_wrap() (what happens if both are fed to that component?).

Going back to the choral example, a faceted graph can be produced using
the following code:

data(singer, package="lattice")

library(ggplot2)

ggplot(data=singer, aes(x=height)) + geom_histogram() +

facet_wrap(~voice.part, nrow=4)

12.2 ggplot2 Miscellenea 245

The resulting plot displays the distribution of singer heights by voice part;
separating the height distribution into their own small, side-by-side plots
makes them easier to compare.

As a second example, we re-visit the Salaries dataset – there is quite an
interesting insight linking salary, sex and yrs.since.phd.7 7: We forego the library(ggplot2) call

from this point on in the interest of read-
ability.

ggplot(Salaries, aes(x=yrs.since.phd, y=salary, color=rank,

shape=rank)) +

geom_point() + facet_grid(.~sex)

Multiple Graphs

In basic R, the graphic parameter mfrow and the base function layout() are
used to combine two or more base graphs into a single plot. This approach
will not work with plots created with the ggplot2 package, however.

The easiest way to place multiple ggplot2 graphs in a single figure is to use
the grid.arrange() function found in the gridExtra package.

The following chunk of code places three ggplot2 charts based on the
Salaries dataset onto a single graph.

p1 <- ggplot(data=Salaries, aes(x=rank)) + geom_bar()

p2 <- ggplot(data=Salaries, aes(x=sex)) + geom_bar()

p3 <- ggplot(data=Salaries, aes(x=yrs.since.phd, y=salary)) +

geom_point()

gridExtra::grid.arrange(p1, p2, p3, ncol=3)

246 12 ggplot2 Visualizations in R

Each graph is saved as an object and then arranged into a single plot via
grid.arrange().88: Note the difference between faceting

and multiple graphs: faceting creates an
array of plots based on one or more cate-
gorical variables, but the components of
a multiple graph could be completely in-

dependent plots arranged into a single
display.

Themes

Themes allow the user to control the overall appearance of ggplot2 charts;
theme() options are used to change fonts, backgrounds, colours, gridlines,
and more. They can be used once or saved and applied to multiple charts.

mytheme <- theme(plot.title=element_text(face="bold",

size=14, color="brown"),

axis.title=element_text(size=10, color="brown"),

axis.text=element_text(size=9, color="black"),

panel.background=element_rect(fill="white",color="black"),

panel.grid.major.y=element_line(color="grey",linetype=1),

panel.grid.minor.y=element_line(color="grey",linetype=2),

panel.grid.minor.x=element_blank(),legend.position="top")

ggplot(Salaries, aes(x=reorder(rank,salary), y=salary,

fill=sex)) +

geom_boxplot() +

labs(title="Salary by Rank and Sex",x="Rank",y="Salary")

ggplot(Salaries, aes(x=reorder(rank,salary), y=salary,

fill=sex)) +

geom_boxplot() +

labs(title="Salary by Rank and Sex",x="Rank",y="Salary") +

mytheme

12.2 ggplot2 Miscellenea 247

Adding + mytheme to the plotting statement generates the second graph:

plot titles are printed in brown 14-point bold;
axis titles in brown 10pt;
axis labels in black 9pt;
the plot area should have a white fill and black borders;
major horizontal grids should be solid grey lines;
minor horizontal grids should be dashed grey lines;
vertical grids should be suppressed, and
the legend should appear at the top of the graph.

The theme() function allows great control over the look of the finished
product (consult help(theme) to learn more about these options).

Tidy Data

ggplot2 is compatible with the tidyverse [125]. Social scientists will likely
be familiar with the distinction between wide data and long data:

in a long format table,9 every column represents a different (conceptual) 9: Also called a “tall” dataset.
variables, and every row represents an observation,
in a wide format table, some variables are spread out across multiple
columns, perhaps along some other characteristic such as the year, say.

Consider, for instance, the WorldPhones dataset, one of R’s built-in dataset:

Year N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer

1951 45939 21574 2876 1815 1646 89 555
1956 60423 29990 4708 2568 2366 1411 733
1957 64721 32510 5230 2695 2526 1546 773
1958 68484 35218 6662 2845 2691 1663 836
1959 71799 37598 6856 3000 2868 1769 911
1960 76036 40341 8220 3145 3054 1905 1008
1961 79831 43173 9053 3338 3224 2005 1076

248 12 ggplot2 Visualizations in R

This dataset records the number of telephones, in thousands, on each con-
tinent for several years in the 1950s and 1960s. Each column represents a
different continent, and each row represents a different year.

This wide format seems like a reasonable way to store data, but suppose
that we want to compare increases in phone usage between continents, with
time on the horizontal axis. In that case, each point on the plot is going to
represent a continent during one year – there are seven observations in each
row, which makes it difficult to plot using ggplot2.

Fortunately, the tidyverse provides an easy way to convert this wide dataset
into a long dataset, by melting the data. This can be achieved by loading the
third-party package called reshape2.10 The WorldPhones dataset can now be10: Note that this is not the only way to

do so, see [1, sec 1.4]. melted from a wide to a long dataset via the melt() function. Let’s assign
the new melted data to an object called WorldPhones.m.1111: Where the m reminds us that the data

has been melted.

WorldPhones.m = reshape2::melt(WorldPhones)

str(WorldPhones.m)

head(WorldPhones.m)

’data.frame’: 49 obs. of 3 variables:

$ Var1 : int 1951 1956 1957 1958 1959 1960 1961 1951 1956 1957 ...

$ Var2 : Factor w/ 7 levels "N.Amer","Europe",..: 1 1 1 1 1 1 1 2 2 2 ...

$ value: num 45939 60423 64721 68484 71799 ...

Var1 Var2 value

1 1951 N.Amer 45939

2 1956 N.Amer 60423

3 1957 N.Amer 64721

4 1958 N.Amer 68484

5 1959 N.Amer 71799

6 1960 N.Amer 76036

Note that while there were originally 7 columns, there are now only 3:

Var1 represents the year;
Var2 the continent, and
value the number of phones.

Every data cell – every observation – every number of phones per year
per continent – in the original dataset now has its own row in the melted
dataset.

In 1951, in North America, for instance, there were 45,939,000 phones, which
is the same value as in the original unmelted data – the data has not changed,
it has just been reshaped.

Changing the column names might make the data more intuitive to read:

12.2 ggplot2 Miscellenea 249

colnames(WorldPhones.m) = c("Year", "Continent", "Phones")

head(WorldPhones.m)

Year Continent Phones

1 1951 N.Amer 45939

2 1956 N.Amer 60423

3 1957 N.Amer 64721

4 1958 N.Amer 68484

5 1959 N.Amer 71799

6 1960 N.Amer 76036

Now that the data has been melted into a long dataset, it is easy to create
a plot with ggplot2, with the usual steps of a ggplot() call, but with
WorldPhones.m instead of WorldPhones:

ggplot(WorldPhones.m, aes(x=Year, y=Phones,

color=Continent)) +

geom_point()

We place Year on the 𝑥−axis, in order to see how the numbers change over
time, while Phones (the variable of interest) is displayed on the 𝑦−axis. The
Continent factor is represented with colour. A scatterplot is obtained by
adding a geom_point() layer.

We can also show trends over time, by drawing lines between points for each
continent. This only require a change to geom_line().

250 12 ggplot2 Visualizations in R

ggplot(WorldPhones.m, aes(x=Year, y=Phones,

color=Continent)) +

geom_line()

Incidentally, one might expect the number of phones to increase exponentially
over time, rather than linearly.12 When that is the case, it can be a good idea12: A fair number of observations are clus-

tered at the bottom of the chart. to plot the vertical axis on a logarithmic scale.

ggplot(WorldPhones.m, aes(x=Year, y=Phones,

color=Continent)) +

geom_line() + scale_y_log10()

12.2 ggplot2 Miscellenea 251

Most of the phone trends still look linear, and the lower values are spotted
more easily; for example, it is now clear that Africa has overtaken Central
America by 1956.

Note how easy it was to build this plot once the data was in the long format:
one row for every point – that is, every combination of year and continent –
on the graph.

Saving Graphs

Plots might look great on the screen, but they typically have to be embedded
in other documents (Markdown, LaTeX, Word, etc.). They must first be saved
in an appropriate format, with a specific resolution and size.

Default size settings can be saved within a .Rmd document by declaring them
in the first chunk of code:

knitr::opts_chunk$set(fig.width=8, fig.height=5)

would tell knitr to produce 8 in. × 5 in. charts.

Saving charts is quite convenient with ggsave(): options include which plot
to save, where to save it, and in what format. For instance,

myplot <- ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()

ggsave(file="mygraph.png", plot=myplot, width=5, height=4)

saves the myplot object as a 5-inch by 4-inch .png file named mygraph.png

in the current working directory. The available formats include .ps, .tex,
.jpeg, .pdf, .jpg, .tiff, .png, .bmp, .svg, or .wmf (the latter only being
available on Windows machines).

Without the plot= option, the most recently created graph is saved. For
instance, the following code would save the mtcars plot (the last plot before
the call) to the current working directory (see the ggsave() helf file for
additional details):

ggplot(data=mtcars, aes(x=mpg)) + geom_histogram()

ggsave(file="mygraph.pdf")

Summary

While ggplot2 and the tidyverse have proven popular and user-friendly,
they do come with some drawbacks, however: the ggplot2 and tidyverse
design teams have fairly strong opinions about how data should be visualized
and processed. As a result, it can sometimes be difficult to produce charts
that go against their design ideals.

252 12 ggplot2 Visualizations in R

In the same vein, some package updates have been known not to preserve

the functionality of working code, sending the analysts scurrying to figure
how the new functions work, which can cause problems with legacy code.1313: Although that can prove fairly annoy-

ing, it is a really good idea for analysts to
maintain and update their code regularly.

Still, the versatility and overall simplicity of ggplot2 cannot be overstated.

The definitive ggplot2 reference is Wickham, Navarro, and Lin Pedersen’s
ggplot2: Elegant Graphics for Data Analysis [123]; it contains explanations
and examples (some of which we borrowed from), as well as the underlying
theory behind ggplot2. Other useful examples and starting points can also
be found in [124, 126].

The ggplot2 action flow is always the same: start with data in a table, map
the display variables to various aesthetics (position, colour, shape, etc.), and
select one or more geometries to draw the graph. This is accomplished in the
code by first creating an object with the basic data and mappings information,
and then by adding or layering additional information as needed.

Once this general way of thinking about plots is understood (especially the
aesthetic mapping part), the drawing process is simplified significantly. There
is no need to think about how to draw particular shapes or colours in the
chart; the many (self-explanatory) geom_ functions do all the heavy lifting.

Similarly, learning how to use new geoms is easier when they are viewed as
ways to display specific aesthetic mappings.

12.3 Examples

In this section, we provide a copious number of examples; some of them
also highlight various aspects of ggplot2 that we did not touch upon in the
preceding explanations.

The vast majority of these examples have been modified from already
existing references; we have strived to cite the references when the required
information was still extent.1414: Please contact us if you discover miss-

ing or mis-attributed references.

Algae Bloom Data

This example is adapted off of L. Torgo’s excellent Data Mining with R
Learning with Case Studies, Second Edition [31].1515: We explored one of its subsets in Sec-

tion 2.1.
The ability to monitor and perform early forecasts of various river algae
blooms is crucial to control the ecological harm they can cause.

The dataset which is used to train the learning model consists of:

chemical properties of various water samples of European rivers
the quantity of seven algae in each of the samples, and
the characteristics of the collection process for each sample.

It is available in the algae_blooms.csv file, or in Torgo’s DMwR package.1616: Which was not available from CRAN
anymore as of publication.

https://ggplot2-book.org
https://www.routledge.com/Data-Mining-with-R-Learning-with-Case-Studies-Second-Edition/Torgo/p/book/9780367573980
https://www.routledge.com/Data-Mining-with-R-Learning-with-Case-Studies-Second-Edition/Torgo/p/book/9780367573980

12.3 Examples 253

algae_blooms<-read.csv("algae_blooms.csv",sep=",",header=TRUE)

We get a sense for the data’s structure by calling the str() function.17 17: Evidently, algae_blooms is a data
frame with 340 observations of 18 vari-
ables each.

str(algae_blooms)

’data.frame’: 340 obs. of 18 variables:

$ season: chr "winter" "spring" "autumn" "spring" ...

$ size : chr "small" "small" "small" "small" ...

$ speed : chr "medium" "medium" "medium" "medium" ...

$ mxPH : num 8 8.35 8.1 8.07 8.06 8.25 8.15 8.05 8.7 7.93 ...

$ mnO2 : num 9.8 8 11.4 4.8 9 13.1 10.3 10.6 3.4 9.9 ...

$ Cl : num 60.8 57.8 40 77.4 55.4 ...

$ NO3 : num 6.24 1.29 5.33 2.3 10.42 ...

$ NH4 : num 578 370 346.7 98.2 233.7 ...

$ oPO4 : num 105 428.8 125.7 61.2 58.2 ...

$ PO4 : num 170 558.8 187.1 138.7 97.6 ...

$ Chla : num 50 1.3 15.6 1.4 10.5 ...

$ a1 : num 0 1.4 3.3 3.1 9.2 15.1 2.4 18.2 25.4 17 ...

$ a2 : num 0 7.6 53.6 41 2.9 14.6 1.2 1.6 5.4 0 ...

$ a3 : num 0 4.8 1.9 18.9 7.5 1.4 3.2 0 2.5 0 ...

$ a4 : num 0 1.9 0 0 0 0 3.9 0 0 2.9 ...

$ a5 : num 34.2 6.7 0 1.4 7.5 22.5 5.8 5.5 0 0 ...

$ a6 : num 8.3 0 0 0 4.1 12.6 6.8 8.7 0 0 ...

$ a7 : num 0 2.1 9.7 1.4 1 2.9 0 0 0 1.7 ...

We have seen that basic histograms can be constructed with the hist()

function. For instance, the histogram of mnO2 measurements is:

hist(algae_blooms$mnO2)

254 12 ggplot2 Visualizations in R

Let’s spruce up this histogram with ggplot2.

library(ggplot2)

ggplot(algae_blooms,aes(x=mnO2)) +

geom_histogram(aes(y=..density..)) +

geom_density(color="blue") +

geom_rug() +

ggtitle("Histogram of mnO2 among 340 observations") +

xlab("") +

ylab("")

In a nutshell, the code above:

plots mnO2 from the algae_blooms dataset ...
as a histogram, where the vertical axis is the density ...
on which will be layered a blue density curve ...
and a rug (or comb) chart showing where the observations actually
fall...
with a title ...
no x axis label ...
and no y axis label.

We can do the same for a1.

ggplot(algae_blooms,aes(x=a1)) +

geom_histogram(aes(y=..density..)) +

geom_density(color="red") +

geom_rug() +

ggtitle("Histogram of a1 among 340 observations") +

xlab("") + ylab("")

12.3 Examples 255

Due to the pronounced skew in both instances, we see that the normal
distribution is not a good fit for either of mnO2 or a1.

Now let’s take a look at some plots involving NH4.18 18: We plot NH4 from the algae_blooms,
as a boxplot with a rug on which the true
values are shown and a horizontal line
showing where the mean value of NH4

falls.
ggplot(algae_blooms,aes(x=factor(0),y=NH4)) +

geom_boxplot() +

geom_rug() +

geom_hline(aes(yintercept=mean(algae_blooms$NH4,

na.rm=TRUE)), linetype=2, colour="pink") +

ylab("Ammonium (NH4+)") +

xlab("") +

scale_x_discrete(breaks=NULL)

256 12 ggplot2 Visualizations in R

We can’t really see the structure because of the suspected outliers.

Let us take a look at the distribution from another angle: we display the
scatter plot of NH4 against the observation number, add a solid line at the
mean value of NH4, a dashed line at the mean + sd value of NH4, and a tight
dashed line at the median value of NH4.

plot(algae_blooms$NH4, xlab="", ylab="Ammonium (NH4+)")

abline(h=mean(algae_blooms$NH4, na.rm=TRUE), lty=1)

abline(h=mean(algae_blooms$NH4, na.rm=TRUE) +

sd(algae_blooms$NH4, na.rm=TRUE), lty=2)

abline(h=median(algae_blooms$NH4, na.rm=TRUE), lty=3)

Only a small number of values find themselves above the 3000 threshold –
might these be outliers?

If we want to only keep the observations that have values of NH4 below 3000
(roughly all values below the long dashed line above), we obtain the following
boxplot.1919: Whether this is actually a good strat-

egy or not is a discussion for another time.

ggplot(algae_blooms[-which(algae_blooms$NH4>3000),],

aes(x=factor(0),y=NH4)) +

geom_boxplot() +

geom_rug() +

geom_hline(aes(yintercept = mean(algae_blooms[

-which(algae_blooms$NH4>3000),8],

na.rm=TRUE)), linetype=2, colour="pink") +

ylab("Ammonium (NH4+)") +

xlab("") +

scale_x_discrete(breaks=NULL)

12.3 Examples 257

It is a bit better than the previous boxplot, to be sure (the box structure has
expanded, at the very least), but there still seems to be a few outlying.20 20: Perhaps that is to be expected? How

could we find out? [1]
Now we take a look at some of the algae levels: we plot a3 by season in a
series of boxplots.

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_boxplot() +

xlab("Season") +

ylab("Algae Level a3")

258 12 ggplot2 Visualizations in R

We can re-arrange the factors’ order, but it requires a bit of fancy footwork
using the forcats’library fct_relevel() function, and dplyr’s mutate().

library(forcats)

library(dplyr)

algae_blooms = mutate(algae_blooms,

factors should appear in the desired order

size=fct_relevel(size,c("small","medium","large")),

speed=fct_relevel(speed,c("low","medium","high")),

season=fct_relevel(season,c("spring","summer",

"autumn","winter")))

Note the difference:2121: A cyclic seasonal pattern is evident.

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_boxplot() +

xlab("Season") +

ylab("Algae Level a3")

Violin plots are cousins of boxplots. Can we use them to get a bit more
insight on the a3 trend, say?2222: What happens if the jitter option is

turned off?

ggplot(algae_blooms,aes(x=season,y=a3)) +

geom_violin() +

geom_jitter() +

xlab("Season") +

ylab("Algae Level a3")

12.3 Examples 259

We can now take a look at possible interactions for NH4< 3000 and season,
binning the observations with respect to the quartiles.23 23: We use the dplyrpipeline operator |>

(sometimes written as %>%; see [1, sec1.4]).

library(dplyr)

f.NH4.data <- filter(algae_blooms,!is.na(NH4)) |>

filter(NH4<3000) |> mutate(q.NH4=cut(NH4,quantile(NH4,

c(0,0.25,0.5,0.75,1)), include.lowest=TRUE))

The faceted chart is shown below – is there anything of interest in the chart?

ggplot(f.NH4.data,aes(x=a1,y=season,color=season)) +

geom_point() + facet_wrap(~q.NH4) + guides(color=FALSE) +

ggtitle("Algae Level a1 by Season and NH4 Quartiles")

260 12 ggplot2 Visualizations in R

Gapminder Chart

The Gapminder dataset is available in R. Irizarry’s dslabs package. We’ll
show how to produce a chart such as the one in Figure 1.4.

gapminder_ds <- dslabs::gapminder # for the dataset

library(tidyverse) # to access ggplot2 and dplyr

library(wesanderson) # for the colour palette

library(ggrepel) # for country names on chart

We start by getting a summary of the available data in the dslabs package,
in particular the available years.

summary(gapminder_ds)

country year infant_mortality life_expectancy

Albania : 57 Min. :1960 Min. : 1.50 Min. :13.20

Algeria : 57 1st Qu.:1974 1st Qu.: 16.00 1st Qu.:57.50

Angola : 57 Median :1988 Median : 41.50 Median :67.54

Antigua : 57 Mean :1988 Mean : 55.31 Mean :64.81

Argentina : 57 3rd Qu.:2002 3rd Qu.: 85.10 3rd Qu.:73.00

Armenia : 57 Max. :2016 Max. :276.90 Max. :83.90

(Other) :10203 NA’s :1453

fertility population gdp continent

Min. :0.840 Min. :3.124e+04 Min. :4.040e+07 Africa :2907

1st Qu.:2.200 1st Qu.:1.333e+06 1st Qu.:1.846e+09 Americas:2052

Median :3.750 Median :5.009e+06 Median :7.794e+09 Asia :2679

Mean :4.084 Mean :2.701e+07 Mean :1.480e+11 Europe :2223

3rd Qu.:6.000 3rd Qu.:1.523e+07 3rd Qu.:5.540e+10 Oceania : 684

Max. :9.220 Max. :1.376e+09 Max. :1.174e+13

NA’s :187 NA’s :185 NA’s :2972

region

Western Asia :1026

Eastern Africa : 912

Western Africa : 912

Caribbean : 741

South America : 684

Southern Europe: 684

(Other) :5586

Preparing the chart for 2012 would be a nice symmetry (see Figure 1.4),
but the version of the data that we have does not contain all the required
information for that year, so we will pick 2009 instead, while setting the
possibility of changing the year if required.

12.3 Examples 261

yr <- 2009

chart_title <- paste("Health & Wealth of Nations

\nGapminder (",yr,")",sep="")

Due to lack of space, we will not be able to label all the countries in the chart;
instead, we label only 20 of them, with the probability that a name is selected
proportional to the country populations.

sort the countries by inverse population

gapminder_ds <- gapminder_ds |>

dplyr::arrange(year, dplyr::desc(population))

pick how many countries will have their names labelled

num_countries <- 20

prepare the data for the selected year

f.gapminder <- gapminder_ds |>

filter(year==yr) |>

mutate(pop_m = population/1e6, gdppc=gdp/population)

weights <- f.gapminder$pop_m/sum(f.gapminder$pop_m)

p <- sample(nrow(f.gapminder), num_countries, prob = weights)

f.gapminder$country_display <- ifelse(

ifelse(1:nrow(f.gapminder) %in% p, TRUE,FALSE),

as.character(f.gapminder$country),"")

The chart is then produced by the code below, using the Darjeeling1 colour
palette from the wesanderson package.

f.gapminder |>

ggplot(aes(x = gdppc, y=life_expectancy, size=pop_m)) +

geom_point(aes(fill=continent), pch=21) +

scale_fill_manual(values=wes_palette(n=5, name="Darjeeling1")) +

scale_x_log10() +

geom_label_repel(aes(label=country_display, size=sqrt(pop_m/pi)),

alpha=0.9, fontface="bold", show.legend=FALSE,

min.segment.length = unit(0, ’lines’)) +

ggtitle(chart_title) +

theme(plot.title = element_text(size=14, face="bold")) +

xlab(’log GDP per capita ($/year)’) +

ylab(’Life expectancy (years)’) + ylim(45,85) +

scale_size_continuous(range=c(1,40), limits = c(0, 1500),

breaks = c(1,10,100,1000), labels = c("1","10","100","1000")) +

guides(fill=guide_legend(override.aes = list(size=5))) +

labs(fill="Continent", size="Population (M)") +

theme_bw() +

theme(plot.title = element_text(size=16, face="bold"))

262 12 ggplot2 Visualizations in R

Florence Nightingale’s Causes of Mortality

Nightingale’s celebrated rose charts (see Figure 1.1) can also be re-created
using ggplot2 (with a big assist to N. Saunders’ tutorial).2424: We always assume that the tidyverse

package has been loaded from this point
on (to have access to all ggplot2 and dplyr

functions. library(HistData) # to get access to the Nightingale dataset

Nightingale |>

select(Date, Month, Year, contains("rate")) |>

pivot_longer(cols=4:6, names_to="Cause", values_to="Rate") |>

mutate(Cause = gsub(".rate", "", Cause),

period = ifelse(Date <= as.Date("1855-03-01"),

"April 1854 to March 1855", "April 1855 to March 1856"),

Month = fct_relevel(Month, "Jul", "Aug", "Sep", "Oct",

"Nov", "Dec", "Jan", "Feb", "Mar", "Apr", "May", "Jun")) |>

ggplot(aes(Month, Rate)) +

geom_col(aes(fill=Cause), width=1, position="identity") +

coord_polar() + facet_wrap(~period) +

scale_fill_manual(values=c("skyblue3", "grey30",

"firebrick")) +

scale_y_sqrt() + theme_bw() +

theme(axis.text.x = element_text(size = 9),

strip.text = element_text(size = 11),

legend.position = "bottom",

plot.margin = unit(c(10, 10, 10, 10), "pt"),

plot.title = element_text(vjust = 5)) +

ggtitle("Diagram of the Causes of Mortality in the

Army in the East")

https://www.r-bloggers.com/2021/03/florence-nightingales-rose-charts-and-others-in-ggplot2/

12.3 Examples 263

W.E.B. Du Bois’ Conjugal Status Chart

We follow statswithmatt’s tutorial to recreate another W.E.B. Du Bois
classic chart [5].25 25: For the historical examples, it would

be a great idea to take the time to explore
the data before trying to plot it.

creating the data

gender <- c("female", "male")

status <- c("single", "widowed", "married")

age_bins <- c("0-15", "15-20", "20-25", "25-30", "30-35",

"35-45", "45-55", "55-65", "OVER 65")

marital <- expand.grid(age_bins, gender, status)

names(marital) <- c("age", "gender", "status")

marital$pct <- c(100, 84, 38, 18, 12, 8, 6, 4, 4, 100, 99,

66, 30, 18, 10, 6, 4, 4, 0, 0, 4, 8, 10, 16, 28, 44, 66,

0, 0, 1, 2, 3, 5, 9, 11, 20, 0, 16, 58, 74, 78, 76, 66,

52, 30, 0, 1, 33, 68, 79, 85, 85, 85, 76)

marital$status <- factor(marital$status,levels = c("widowed",

"married", "single"))

marital$age_numeric <- as.numeric(marital$age)

creating the chart

ppmsca_33915 <- ggplot(data=marital, mapping = aes(

x = age_numeric, y = ifelse(gender == "male", -pct, pct),

fill=status)) +

geom_bar(stat = "identity", width = 1) +

scale_x_continuous(breaks = (1:9) + 0.5, labels = age_bins,

https://www.statswithmatt.com/post/ggplot2-meets-w-e-b-du-bois/

264 12 ggplot2 Visualizations in R

expand = c(0, 0), sec.axis = dup_axis()) +

scale_y_continuous(breaks = seq(-100, 100, by = 10),

labels = abs, expand = c(0, 0),

minor_breaks = seq(-100, 100, by = 2)) +

scale_fill_manual(values=c("seagreen4", "firebrick3",

"royalblue3"),

labels = c("WIDOWED", "MARRIED", "SINGLE")) +

labs(title = "Conjugal condition of American Negroes

according to age periods",

subtitle = "Done by Atlanta University", x = "AGES",

y = "PERCENT") +

coord_flip(clip = "off")

annotating the chart

ppmsca_33915 + annotate("text",label = rep(c("SINGLE",

"MARRIED", "WIDOWED"), each = 2),

y = c(-35, 35, -55, 55, -92, 92),

angle = c(45, -45, 45, -45, 60, -60),

x = c(2, 2, 6, 6, 8.5, 7.5),

size = c(4, 4, 4, 4, 3, 3),

fontface = "bold") +

annotate("text", label = c("MALES", "FEMALES"),

y = c(-50, 50), x = Inf,

vjust = -0.4,size=2.5, fontface = "bold") +

theme(text = element_text(face = "bold"),

panel.background = element_blank(),

plot.title = element_text(size = 8, vjust = 2),

plot.subtitle = element_text(size = 6, vjust = 2),

axis.title = element_text(size = 8),

axis.ticks = element_blank(),

panel.grid.major = element_line(color = "black",

size = 0.1),

panel.grid.minor.x = element_line(color = "black",

size = 0.05),

panel.grid.minor.y = element_blank(),

legend.background = element_blank(),

legend.position = "none", legend.key = element_blank(),

panel.ontop = TRUE,

panel.border = element_rect(fill=NA, color = "black"),

axis.text.x = element_text(size = 8),

axis.title.y = element_text(angle = 0, vjust = 1),

axis.title.y.right = element_text(angle = 0, vjust = 1),

axis.text.y = element_text(vjust = 2,size=8))

12.3 Examples 265

Minard’s March to Moscow

We recreate Minard’s famous March to Moscow chart (see Figure 1.1 and
Section 1.4) by following very closely the code provided in M. Friendly’s
tutorial .26 26: We would have had a hard time com-

ing up with this stuff on our own, not
going to lie...

getting the data

data(Minard.troops,Minard.cities,Minard.temp,package="HistData")

required packages

library(ggplot2)

library(scales) # additional formatting for scales

library(grid) # combining plots

library(gridExtra) # combining plots

library(dplyr) # tidy data manipulations

the troops/cities upper chart

breaks <- c(1, 2, 3) * 10^5

plot.troops.cities <- Minard.troops |> ggplot(aes(long, lat)) +

geom_path(aes(size = survivors, colour = direction,

group = group), lineend="round") +

scale_size("Survivors", range = c(0,20),

breaks=breaks, labels=scales::comma(breaks)) +

scale_colour_manual("Direction",

values=c("#E80000", "#1F1A1B"),

labels=c("Advance", "Retreat")) +

ylim(53.8,56.0) + coord_cartesian(xlim = c(24, 38)) +

labs(x = NULL, y = NULL) + theme_bw() +

guides(color = "none",size="none") +

http://euclid.psych.yorku.ca/www/psy6135/tutorials/Minard.html

266 12 ggplot2 Visualizations in R

geom_point(data=Minard.cities, size=10, pch=22,

color = "black", fill="gray") +

geom_label_repel(data=Minard.cities, aes(label = city),

size = 3, vjust = 0.5, alpha=0.8)

replacing a missing value in the temperature data

Minard.temp$date = factor(Minard.temp$date,

levels=c(levels(Minard.temp$date), "Unknown"))

Minard.temp$date[is.na(Minard.temp$date)] <- "Unknown"

the temperature lower chart

plot.temp <- Minard.temp |>

mutate(label = paste0(temp, "° ", date)) |>

ggplot(aes(long, temp)) +

geom_path(color="grey", size=2, group=1) +

geom_point(size=1) +

geom_label_repel(aes(label=label), size=4) +

coord_cartesian(xlim = c(24, 38)) +

labs(x = NULL, y="Temperature") +

theme_bw() + theme(panel.grid.major.x = element_blank(),

panel.grid.minor.x = element_blank(),

panel.grid.minor.y = element_blank(),

axis.text.x = element_blank(), axis.ticks = element_blank(),

panel.border = element_blank())

combining both charts

grid.arrange(plot.troops.cities, plot.temp, nrow=2,

heights=c(3.5, 1.2))

grid.rect(width = .95, height = .95, gp = gpar(lwd = 0,

col = "white", fill=NA))

12.3 Examples 267

John Snow’s Cholera Outbreak Map

We recreate John Snow’s historical map of the 1854 London cholera outbreak
(adapted from V.B. Lanzetta’s R Data Visualization Recipes) [127].27 27: The culprit (contaminated pump) is

easily identifiable in this version of the
chart.

getting the data and required packages

data(Snow.streets, Snow.deaths, Snow.pumps, package="HistData")

library(ggplot2)

library(ggrepel)

street map, death locations, water pump locations

ggplot(data=Snow.streets) +

geom_path(aes(x=x, y=y, group = street)) +

geom_point(data=Snow.deaths, aes(x=x, y=y,

colour="black", shape="15")) +

geom_point(data=Snow.pumps, aes(x=x, y=y,

colour="red", shape="16"), size=4) +

scale_colour_manual("Locations", values=c("black","red"),

labels=c("deaths","water pumps")) +

scale_shape_manual("Locations", values=c(16,15),

labels=c("deaths","water pumps")) +

geom_label_repel(data=Snow.pumps, aes(x=x, y=y, label=label),

colour="black", size=3, vjust=0.5, alpha=0.8) +

ggtitle("John Snow’s London Cholera Outbreak Map (1854)") +

theme_bw() +

theme(plot.title = element_text(size=16, face="bold"),

axis.title.x=element_blank(), axis.text.x=element_blank(),

axis.ticks.x=element_blank(), axis.title.y=element_blank(),

axis.text.y=element_blank(), axis.ticks.y=element_blank())

https://www.packtpub.com/product/r-data-visualization-recipes/9781788398312

268 12 ggplot2 Visualizations in R

Census PUMS Data

The following example is taken from N. Zumel and J. Mount’s excellent
Practical Data Science with R [128].

The custdata.tsv file is derived from U.S. Census PUMS data. The business
objective is to predict whether a customer has health insurance. This synthetic
dataset contains customer information for individuals whose health insurance
status is known.

We start by importing the data into a data frame using the read.delim()

function (to handle the odd file format).

df <- read.delim(here::here("data", "custdata.tsv"))

dim(df)

[1] 1000 11

Evidently, there are 1000 observations of 11 variables. The first few observa-
tions look like:

head(df,5)

custid sex is.employed income marital.stat health.ins

1 2068 F NA 11300 Married TRUE

2 2073 F NA 0 Married TRUE

3 2848 M TRUE 4500 Never Married FALSE

4 5641 M TRUE 20000 Never Married FALSE

5 6369 F TRUE 12000 Never Married TRUE

housing.type recent.move num.vehicles age state.of.res

1 Homeowner free and clear FALSE 2 49 Michigan

2 Rented TRUE 3 40 Florida

3 Rented TRUE 3 22 Georgia

4 Occupied with no rent FALSE 0 22 New Mexico

5 Rented TRUE 1 31 Florida

We obtain a data summary via summary().

summary(df)

custid sex is.employed income

Min. : 2068 Length:1000 Mode :logical Min. : -8700

1st Qu.: 345667 Class :character FALSE:73 1st Qu.: 14600

Median : 693403 Mode :character TRUE :599 Median : 35000

Mean : 698500 NA’s :328 Mean : 53505

3rd Qu.:1044606 3rd Qu.: 67000

Max. :1414286 Max. :615000

https://www.amazon.ca/Practical-Data-Science-Nina-Zumel/dp/1617291560

12.3 Examples 269

marital.stat health.ins housing.type recent.move

Length:1000 Mode :logical Length:1000 Mode :logical

Class :character FALSE:159 Class :character FALSE:820

Mode :character TRUE :841 Mode :character TRUE :124

NA’s :56

num.vehicles age state.of.res

Min. :0.000 Min. : 0.0 Length:1000

1st Qu.:1.000 1st Qu.: 38.0 Class :character

Median :2.000 Median : 50.0 Mode :character

Mean :1.916 Mean : 51.7

3rd Qu.:2.000 3rd Qu.: 64.0

Max. :6.000 Max. :146.7

NA’s :56

Right off the bat, we see that there are some problems with the data (NAs,
impossible ranges, etc.). We can also provide the number of NAs per variable
in an easier-to-read format using the following code block:

mv <- colSums(is.na(df))

cbind(mv) # cbind to display as column

mv

custid sex is.employed income marital.stat health.ins

0 0 328 0 0 0

housing.type recent.move num.vehicles age state.of.res

56 56 56 0 0

The fact that three of the variables have the same (relatively high) number of
missing values means that it is possible that the same 56 observations have
no measurement for housing.type, recent.move, and num.vehicles.28 28: That is not a guarantee, of course. We

still need to check (try it!).
As for the ranges, something is definitely fishy with income and age:

summary(df$income)

summary(df$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8700 14600 35000 53505 67000 615000

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 38.0 50.0 51.7 64.0 146.7

What does it mean for incomes to be negative? For a customer to be 0 years
old? Or worse, 146.7?

We use ggplot2 to visually explore the data.29

29: Recall that:

the ggplot() function works only
on data frames and/or tibbles;
it does not create a graph, it creates
an object;
graphs are produced from layers,
which are added to the object, and
aesthetics are the visual elements

of the graph, e.g., the 𝑥 and 𝑦 vari-
ables, the size of markers, colors,
etc.

We will begin by providing a
number of univariate visualizations, starting with the age variable.

270 12 ggplot2 Visualizations in R

library(ggplot2)

ggplot(df) + geom_histogram(aes(x=age),binwidth=5,fill="gray")

What happens if we use different bin widths?

ggplot(df) + geom_histogram(aes(x=age),binwidth=10,fill="gray")

ggplot(df) + geom_histogram(aes(x=age),binwidth=1,fill="gray")

We definitely seem to find ourselves in a Goldilocks situation.

We can also get some (univariate) information about the income variable:

library(scales)

ggplot(df) + geom_histogram(aes(x=income), binwidth = 10000) +

scale_x_continuous(labels=dollar)

ggplot(df) + geom_histogram(aes(x=income), binwidth = 5000) +

scale_x_continuous(labels=dollar)

12.3 Examples 271

We have already seen that there are negative income values in the dataset.
We will restrict the data to those customers with positive income, and display
them using a logarithmic scale.

df.2 <- subset(df, income > 0)

ggplot(df.2) +

geom_histogram(aes(x=income), binwidth = 5000) +

scale_x_log10(breaks=10^(1:6), labels=dollar)

Whoa, that’s ... quite possible the most useless chart we have ever seen. The
problem here is that binwidth refers to the powers, not to the raw numbers.

ggplot(df.2) +

geom_histogram(aes(x=income), binwidth = 0.05) +

scale_x_log10(breaks=10^(1:6), labels=dollar)

272 12 ggplot2 Visualizations in R

Much better!

A density plot can also provide an estimate of the probability distribution
function.

library(scales)

ggplot(df.2) + geom_density(aes(x=income)) +

scale_x_continuous(labels=dollar)

The tail is a bit long/heavy: as before, it might be more illuminating to use a
logarithmic scale.

12.3 Examples 273

ggplot(df.2) + geom_density(aes(x=income)) +

scale_x_log10(breaks=10^(2:5), labels=dollar) +

annotation_logticks()

What can we say about the distribution of marital status?

ggplot(df) + geom_bar(aes(x=marital.stat), fill="gray")

Nothing is too surprising so far (although, as mentioned, something is
definitely off with some of the age and income measurements).

274 12 ggplot2 Visualizations in R

If we try to get information about a variable with 10+ levels (state.of.res),
we see that the charts can get busy.

ggplot(df) + geom_bar(aes(x=state.of.res), fill="gray")

same, but with a coordinate flip

and text resizing for readibility

ggplot(df) + geom_bar(aes(x=state.of.res), fill="gray") +

coord_flip() +

theme(axis.text.y=element_text(size=rel(0.6)))

The flipped chart is clearly easier to read, due to text overlap in the original
chart.

12.3 Examples 275

The latter displays the states ordered alphabetically; to order according to
the number of observations in each state, we first need to modify the data
using transform(), which actually re-orders the levels for state.of.res by
population in the dataset (which are presumably representative of the order
in the full US population).

tbl <- as.data.frame(table(df$state.of.res))

colnames(tbl) <- c("state.of.res","count")

tbl <- transform(tbl,state.of.res=reorder(state.of.res,count))

ggplot(tbl) +

geom_bar(aes(x=state.of.res, y=count), stat="identity") +

coord_flip() +

theme(axis.text.y=element_text(size=rel(0.6)))

How can we find the average number of vehicles per customer in each state?
For instance, in Delaware and Alaska, it is:

with(df,mean(num.vehicles[state.of.res=="Delaware"],na.rm=TRUE))

with(df,mean(num.vehicles[state.of.res=="Alaska"],na.rm=TRUE))

[1] 2

[1] 2.333333

(Note the na.rm=TRUE to avoid issues with computations involving observa-
tions with no measurement)

We could repeat the process 50 times (once for each state), or we could use
either a split/apply/combine approach (in base R) or a tidyverse approach
(using plyr).

276 12 ggplot2 Visualizations in R

split

pieces <- split(df, df$state.of.res)

apply

result <- lapply(pieces, function(p) data.frame(

state.of.res=p$state.of.res[[1]],

state.avg.vehicles=mean(p$num.vehicles, na.rm=TRUE)))

(result <- do.call("rbind", result))

state.of.res state.avg.vehicles state.of.res state.avg.vehicles

Alabama 2.100000 Montana 2.500000
Alaska 2.333333 Nebraska 1.500000
Arizona 1.888889 Nevada 2.000000
Arkansas 1.833333 New Hampshire 1.800000
California 2.098901 New Jersey 1.555556
Colorado 1.636364 New Mexico 2.333333
Connecticut 2.000000 New York 1.928571
Delaware 2.000000 North Carolina 1.666667
Florida 1.866667 North Dakota 3.000000
Georgia 1.708333 Ohio 1.836735
Hawaii 1.750000 Oklahoma 1.818182
Idaho 1.666667 Oregon 2.285714
Illinois 2.183673 Pennsylvania 1.938462
Indiana 2.000000 Rhode Island 2.000000
Iowa 2.000000 South Carolina 1.785714
Kansas 1.750000 South Dakota 1.600000
Kentucky 1.933333 Tennessee 1.571429
Louisiana 1.533333 Texas 1.833333
Maine 2.200000 Utah 1.750000
Maryland 2.750000 Vermont 1.666667
Massachusetts 1.833333 Virginia 1.884615
Michigan 1.843137 Washington 2.235294
Minnesota 2.350000 West Virginia 1.666667
Mississippi 1.500000 Wisconsin 1.692308
Missouri 1.950000 Wyoming 2.000000

The tidyverse-like solution is much more elegant, however:

library(plyr)

result <- ddply(

df, # dataframe

"state.of.res", # split-by variable

summarize, # function to apply to each piece

function arguments

state.avg.vehicles=mean(num.vehicles, na.rm=TRUE)

)

12.3 Examples 277

When it comes to univariate representations:

we may consider using a histogram or density plot to look for outliers
or incorrect values in numerical variables,
which will also give a sense of the distribution – is it symmetric, normal,
lognormal, etc;
but we may consider using a bar chart to compare frequencies for
categorical variables.

We can also look at bivariate charts; perhaps one involving age and income,
say. We start by removing the odd observations.

df.3 <- with(df, subset(df, age>0 & age < 100 & income > 0))

We can prepare a scatterplot:

ggplot(df.3, aes(x=age, y=income)) +

geom_point() +

scale_y_continuous(labels=dollar)

Or colour the dots according to the health insurance status.

ggplot(df.3, aes(x=age, y=income, colour = health.ins)) +

geom_point() +

scale_y_continuous(labels=dollar)

278 12 ggplot2 Visualizations in R

The relationship between age and income is not linear, so adding the line
of best-fit might not provide much in the way of insight, but it can be done
nonetheless.

ggplot(df, aes(x=age, y=income)) +

geom_point() +

geom_smooth(method="lm") +

scale_y_continuous(labels=dollar)

ggplot(df, aes(x=age, y=income, colour = health.ins)) +

geom_point() +

geom_smooth(method="lm") +

scale_y_continuous(labels=dollar)

12.3 Examples 279

A heat map (where a cell’s colour represents the number of observations in
the cell) might be more à propos.30 30: Is the smoothing curve a bit too much,

here?

ggplot(df, aes(x=age, y=income)) +

geom_bin2d() +

scale_y_continuous(labels=dollar)

ggplot(df, aes(x=age, y=income)) +

geom_bin2d() +

scale_y_continuous(labels=dollar) +

geom_smooth()

How about a hexbin heat map?

library(hexbin)

ggplot(df, aes(x=age, y=income)) + geom_hex(binwidth=c(5, 20000)) +

scale_y_continuous(labels=dollar) + geom_smooth()

280 12 ggplot2 Visualizations in R

Other plots can be produced: here is a plot of health.ins vs. age.

ggplot(df.3, aes(x=age, y=health.ins)) + geom_point()

That’s not really surprising, is it?31 It doesn’t seem as though there are that31: As one gets older, one is more likely
to get health insurance, we suppose. many more people with insurance than there are without, but that’s because

all the observations with the same age are represented by a single dot.

A heatmap could incorporate the number of observations into the picture.

ggplot(df.3, aes(x=age, y=health.ins)) + geom_bin2d()

Mmhhh. . . that’s not nearly as insightful as could have been expected.

One of the geoms can come in handy: geom_jitter.

12.3 Examples 281

ggplot(df.3, aes(x=age, y=health.ins)) +

geom_jitter(height=0.2)

Now we can clearly see that there are substantially fewer customers without
life insurance.

Why stop at only 2 variables when we could add income to the picture?

ggplot(df.3, aes(x=age, y=health.ins, colour=log10(income))) +

geom_jitter(height=0.2)

282 12 ggplot2 Visualizations in R

Is there anything insightful in there?

We could also try to link marital status to health insurance status?

ggplot(df) + geom_bar(aes(x=marital.stat, fill=health.ins))

Stacked bar charts are the pie charts of bar charts – it is much better to put
the bars side-by-side.

ggplot(df) + geom_bar(aes(x=marital.stat, fill=health.ins),

position="dodge")

12.3 Examples 283

One exception could be made for proportion stacked bar charts:

ggplot(df, aes(x=marital.stat)) +

geom_bar(aes(fill=health.ins), position="fill")

But we do lose the sense of the size of each sub-categories’ population. Some
jitter functionality comes to the rescue once again!

last_plot() + geom_point(aes(x=marital.stat, y=-0.05),

position=position_jitter(h=0.02), size=0.75, alpha=0.75)

284 12 ggplot2 Visualizations in R

Might there be a link between housing type and marital status?

ggplot(df.3) + geom_bar(aes(housing.type, fill=marital.stat),

position="dodge")

last_plot() + coord_flip()

ggplot(subset(df.3, !is.na(housing.type))) +

geom_bar(aes(housing.type, fill=marital.stat),

position="dodge") +

theme(axis.text.x=element_text(angle=15))

12.3 Examples 285

It’s easy to see how some fine-tuning can make the charts easier to read
(which can only help when it comes to extracting actionable insights).

We end our data exploration of by showing how to build a small multiple
chart, by housing.type:

ggplot(subset(df.3, !is.na(housing.type))) +

geom_bar(aes(marital.stat)) +

facet_wrap(~housing.type, scales="free_y") +

theme(axis.text.x=element_text(size=rel(0.8)))

286 12 ggplot2 Visualizations in R

Is there any link with with health insurance status?

ggplot(subset(df.3, !is.na(housing.type))) +

geom_bar(aes(marital.stat, fill=health.ins),

position="dodge") +

facet_wrap(~housing.type, ncol=2,

labeller=label_wrap_gen(width=20, multi_line=TRUE)) +

theme(axis.text.x=element_text(size=rel(0.6)))

+ coord_flip()

ggplot2 Recipes and Examples

We end with examples showcasing additional functionality.3232: We will not be adding the ggplot2

and theme_set calls in the code chunks
anymore; unless otherwise stated, assume
that they have been compiled at an earlier
stage.

Smoothing Lines

options(scipen=999) # turn-off scientific notation

theme_set(theme_bw()) # pre-set the bw theme.

data("midwest", package = "ggplot2")

ggplot(midwest, aes(x=area, y=poptotal)) +

geom_point(aes(col=state, size=popdensity)) +

geom_smooth(method="loess", se=F) +

xlim(c(0, 0.1)) + ylim(c(0, 500000)) +

labs(subtitle="Area Vs Population", y="Population", x="Area",

title="Scatterplot", caption = "Source: midwest")

12.3 Examples 287

Scatterplots and Jitter Charts

data(mpg, package="ggplot2")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford",

"honda", "hyundai"),]

g <- ggplot(mpg_select, aes(displ, cty)) +

labs(subtitle="mpg: Displacement vs City Mileage",

title="Bubble chart") +

geom_jitter(aes(col=manufacturer, size=hwy)) +

geom_smooth(aes(col=manufacturer), method="lm", se=F)

288 12 ggplot2 Visualizations in R

Marginal Distributions

library(ggExtra)

data(mpg, package="ggplot2")

mpg_select <- mpg[mpg$hwy >= 35 & mpg$cty > 27,]

g <- ggplot(mpg, aes(cty, hwy)) + geom_count() +

geom_smooth(method="lm", se=F)

plot(g)

ggMarginal(g, type = "histogram", fill="transparent")

Diverging Bar Charts

mtcars_new <- mtcars |>

tibble::rownames_to_column(var = "car_name") |>

dplyr::mutate(car_name = as.factor(car_name),

mpg_z = round(scale(mpg), 2),

mpg_type = ifelse(mpg_z < 0, "below", "above")) |>

dplyr::arrange(mpg_z) # sort

Diverging Barcharts

ggplot(mtcars_new, aes(x= car_name, y=mpg_z, label=mpg_z)) +

geom_bar(stat=’identity’, aes(fill=mpg_type), width=.5) +

scale_fill_manual(name="Mileage",

labels = c("Above Average", "Below Average"),

values=c("above"="#00ba38", "below"="#f8766d")) +

labs(subtitle="Normalised mileage from ’mtcars’",

title= "Diverging Bars", x = "Car Names") + coord_flip()

12.3 Examples 289

Area Charts

library(quantmod)

data("economics", package = "ggplot2")

Compute % Returns

economics$returns_perc <- c(0, diff(economics$psavert) /

economics$psavert[-length(economics$psavert)])

Create break points and labels for axis ticks

brks <- economics$date[seq(1, length(economics$date), 12)]

#install.packages("lubridate")

lbls <- lubridate::year(economics$date[seq(1,

length(economics$date), 12)])

Plot

ggplot(economics[1:100,], aes(date, returns_perc)) +

geom_area() +

scale_x_date(breaks=brks, labels=lbls) +

theme(axis.text.x = element_text(angle=90)) +

labs(title="Area Chart",

subtitle = "Perc Returns for Personal Savings",

y="% Returns for Personal savings",

caption="Source: economics")

290 12 ggplot2 Visualizations in R

Funnel Charts

library(ggthemes)

library(ggfortify)

Read data

email_campaign_funnel <- read.csv("https://raw.

githubusercontent.com/selva86/datasets/

master/email_campaign_funnel.csv")

X Axis Breaks and Labels

brks <- seq(-15000000, 15000000, 5000000)

lbls = paste0(as.character(c(seq(15, 0, -5),

seq(5, 15, 5))), "m")

Plot

ggplot(email_campaign_funnel, aes(x = Stage, y = Users,

fill=Gender)) +

geom_bar(stat = "identity", width = .6) +

scale_y_continuous(breaks = brks,

labels = lbls) +

coord_flip() +

labs(title="Email Campaign Funnel") +

theme_tufte() + # Tufte theme from ggfortify

theme(plot.title = element_text(hjust = .5),

axis.ticks = element_blank()) +

scale_fill_brewer(palette = "Dark2")

12.3 Examples 291

Calendar Heatmaps

library(plyr)

library(scales)

library(zoo)

df <- read.csv("https://raw.githubusercontent.com/selva86/

datasets/master/yahoo.csv")

df$date <- as.Date(df$date) # format date

df <- df[df$year >= 2012,] # filter reqd years

Create Month/Week

df$yearmonth <- as.yearmon(df$date)

df$yearmonthf <- factor(df$yearmonth)

df <- ddply(df,.(yearmonthf), transform,

monthweek=1+week-min(week)) # compute week number of month

df <- df[, c("year", "yearmonthf", "monthf", "week",

"monthweek", "weekdayf", "VIX.Close")]

head(df)

year yearmonthf monthf week monthweek weekdayf VIX.Close

1 2012 Jan 2012 Jan 1 1 Tue 22.97

2 2012 Jan 2012 Jan 1 1 Wed 22.22

3 2012 Jan 2012 Jan 1 1 Thu 21.48

4 2012 Jan 2012 Jan 1 1 Fri 20.63

5 2012 Jan 2012 Jan 2 2 Mon 21.07

6 2012 Jan 2012 Jan 2 2 Tue 20.69

292 12 ggplot2 Visualizations in R

Plot

ggplot(df, aes(monthweek, weekdayf, fill=VIX.Close)) +

geom_tile(colour = "white") +

facet_grid(year~monthf) +

scale_fill_gradient(low="red", high="green") +

labs(x="Week of Month",

y="",

title = "Time-Series Calendar Heatmap",

subtitle="Yahoo Closing Price",

fill="Close")

Ordered Bar Charts

Prepare data: group mean city mileage by manufacturer.

cty_mpg <- aggregate(mpg$cty, by=list(mpg$manufacturer), FUN=mean)

colnames(cty_mpg) <- c("make", "mileage")

cty_mpg <- cty_mpg[order(cty_mpg$mileage),]

cty_mpg$make <- factor(cty_mpg$make, levels = cty_mpg$make)

head(cty_mpg, 4)

make mileage

9 lincoln 11.33333

8 land rover 11.50000

3 dodge 13.13514

10 mercury 13.25000

12.3 Examples 293

Draw plot

ggplot(cty_mpg, aes(x=make, y=mileage)) +

geom_bar(stat="identity", width=.5, fill="tomato3") +

labs(title="Ordered Bar Chart",

subtitle="Make Vs Avg. Mileage",

caption="source: mpg") +

theme(axis.text.x = element_text(angle=65, vjust=0.6))

Correlograms

library(ggcorrplot)

Correlation matrix

corr <- round(cor(mtcars), 1)

Plot

ggcorrplot(corr, hc.order = TRUE,

type = "lower",

lab = TRUE,

lab_size = 3,

method="circle",

colors = c("tomato2", "white", "springgreen3"),

title="Correlogram of mtcars",

ggtheme=theme_bw)

294 12 ggplot2 Visualizations in R

Treemaps

library(devtools)

#devtools::install_github("wilkox/treemapify")

library(treemapify)

data(G20)

head(G20)

region country gdp_mil_usd hdi

1 Africa South Africa 384315 0.629

2 North America United States 15684750 0.937

3 North America Canada 1819081 0.911

4 North America Mexico 1177116 0.775

5 South America Brazil 2395968 0.730

6 South America Argentina 474954 0.811

econ_classification hemisphere

1 Developing Southern

2 Advanced Northern

3 Advanced Northern

4 Developing Northern

5 Developing Southern

6 Developing Southern

12.3 Examples 295

ggplot(G20, aes(area = gdp_mil_usd, fill=region,

label = country)) +

geom_treemap() +

geom_treemap_text(grow = T, reflow = T, colour = "black") +

facet_wrap(~ econ_classification) +

scale_fill_brewer(palette = "Set1") +

theme(legend.position = "bottom") +

labs(

title = "The G-20 major economies",

caption = "The area of each country is proportional

to its relative GDP

within the economic group (advanced or developing)",

fill="Region"

)

Parallel Coordinates

library(dplyr)

library(triangle)

set.seed(0)

q1_d1 <- round(rtriangle(1000, 1, 7, 5))

q1_d2 <- round(rtriangle(1000, 1, 7, 6))

q1_d3 <- round(rtriangle(1000, 1, 7, 2))

df <- data.frame(q1_d1 = factor(q1_d1), q1_d2 = factor(q1_d2),

q1_d3 = factor(q1_d3))

group by combinations and count

df_grouped <- df |> group_by(q1_d1, q1_d2, q1_d3) |> count()

296 12 ggplot2 Visualizations in R

set an id string that denotes the value combination

df_grouped <- df_grouped |> mutate(id = factor(paste(q1_d1,

q1_d2, q1_d3, sep = ’-’)))

order.freq <- order(df_grouped[,4],decreasing=TRUE)

sort by count and select top rows

df_grouped <- df_grouped[order.freq[1:25],]

library(reshape2)

create long format

df_pcp <- melt(df_grouped, id.vars = c(’id’, ’freq’))

df_pcp$value <- factor(df_pcp$value)

y_levels <- levels(factor(1:7))

ggplot(df_pcp, aes(x = variable, y = value, group = id)) +

geom_path(aes(size = freq, color = id),

alpha = 0.5,

lineend = ’round’, linejoin = ’round’) +

scale_y_discrete(limits = y_levels, expand = c(0.5, 0)) +

scale_size(breaks = NULL, range = c(1, 7))

Time Series and Variants

library(ggfortify)

theme_set(theme_classic())

autoplot(AirPassengers) + labs(title="AirPassengers") +

theme(plot.title = element_text(hjust=0.5))

12.3 Examples 297

theme_set(theme_classic())

ggplot(economics, aes(x=date)) +

geom_line(aes(y=unemploy)) +

labs(title="Time Series Chart",

subtitle="Number of unemployed in thousands from

’Economics-US’ Dataset",

caption="Source: Economics",

y="unemploy")

298 12 ggplot2 Visualizations in R

library(lubridate)

economics_m <- economics[1:24,]

labels and breaks for X axis text

lbls <- paste0(month.abb[month(economics_m$date)], " ",

lubridate::year(economics_m$date))

brks <- economics_m$date

plot

ggplot(economics_m, aes(x=date)) +

geom_line(aes(y=pce)) +

labs(title="Monthly Time Series",

subtitle="Personal consumption expenditures, in

billions of dollars",

caption="Source: Economics", y="pce") +

scale_x_date(labels = lbls, breaks = brks) +

theme(axis.text.x = element_text(angle = 90, vjust=0.5),

panel.grid.minor = element_blank())

library(lubridate)

economics_y <- economics[1:90,]

labels and breaks for X axis text

brks <- economics_y$date[seq(1, length(economics_y$date),12)]

lbls <- lubridate::year(brks)

plot

12.3 Examples 299

ggplot(economics_y, aes(x=date)) +

geom_line(aes(y=psavert)) +

labs(title="Yearly Time Series",

subtitle="Personal savings rate",

caption="Source: Economics",

y="psavert") +

scale_x_date(labels = lbls, breaks = brks) +

theme(axis.text.x = element_text(angle = 90, vjust=0.5),

panel.grid.minor = element_blank())

data(economics_long, package = "ggplot2")

head(economics_long)

library(lubridate)

df <- economics_long[economics_long$variable %in% c("psavert",

"uempmed"),]

df <- df[lubridate::year(df$date) %in% c(1967:1981),]

labels and breaks for X axis text

brks <- df$date[seq(1, length(df$date), 12)]

lbls <- lubridate::year(brks)

plot

ggplot(df,aes(x=date)) + geom_line(aes(y=value,col=variable)) +

labs(title="Time Series of Returns Percentage",

subtitle="Drawn from Long Data format",

caption="Source: Economics",

y="Returns %", color=NULL) +

scale_x_date(labels = lbls, breaks = brks) +

300 12 ggplot2 Visualizations in R

scale_color_manual(labels = c("psavert", "uempmed"),

values=c("psavert"="#00ba38",

"uempmed"="#f8766d")) +

theme(axis.text.x = element_text(angle = 90, vjust=0.5,

size = 8), panel.grid.minor = element_blank())

library(lubridate)

df <- economics[, c("date", "psavert", "uempmed")]

df <- df[lubridate::year(df$date) %in% c(1967:1981),]

labels and breaks for X axis text

brks <- df$date[seq(1, length(df$date), 12)]

lbls <- lubridate::year(brks)

plot

ggplot(df, aes(x=date)) +

geom_area(aes(y=psavert+uempmed, fill="psavert")) +

geom_area(aes(y=uempmed, fill="uempmed")) +

labs(title="Area Chart of Returns Percentage",

subtitle="From Wide Data format",

caption="Source: Economics",

y="Returns %") +

scale_x_date(labels = lbls, breaks = brks) +

scale_fill_manual(name="", values=c("psavert"="#00ba38",

"uempmed"="#f8766d")) +

theme(panel.grid.minor = element_blank())

12.3 Examples 301

library(forecast)

theme_set(theme_classic())

Subset data

small <- window(nottem, start=c(1920, 1), end=c(1925, 12))

Plot

ggseasonplot(AirPassengers) + labs(title="Seasonal plot:

International Airline Passengers")

ggseasonplot(small) + labs(title="Seasonal plot: Air

temperatures at Nottingham Castle")

Clusters

devtools::install_github("hrbrmstr/ggalt")

library(ggalt)

library(ggfortify)

theme_set(theme_classic())

302 12 ggplot2 Visualizations in R

Compute data with principal components

df <- iris[c(1, 2, 3, 4)]

pca_mod <- prcomp(df) # compute principal components

Data frame of principal components -

df_pc <- data.frame(pca_mod$x, Species=iris$Species)

df_pc_vir <- df_pc[df_pc$Species == "virginica",]

df_pc_set <- df_pc[df_pc$Species == "setosa",]

df_pc_ver <- df_pc[df_pc$Species == "versicolor",]

Plot

ggplot(df_pc, aes(PC1, PC2, col=Species)) +

geom_point(aes(shape=Species), size=2) +

labs(title="Iris Clustering",

subtitle="With principal components PC1 and PC2

as X and Y axis",

caption="Source: Iris") +

coord_cartesian(xlim=1.2*c(min(df_pc$PC1),max(df_pc$PC1)),

ylim=1.2*c(min(df_pc$PC2),max(df_pc$PC2))) +

geom_encircle(data=df_pc_vir, aes(x=PC1, y=PC2)) +

geom_encircle(data=df_pc_set, aes(x=PC1, y=PC2)) +

geom_encircle(data=df_pc_ver, aes(x=PC1, y=PC2))

Dumbbell Charts

devtools::install_github("hrbrmstr/ggalt")

library(ggalt)

theme_set(theme_classic())

health <- read.csv("https://raw.githubusercontent.com/

selva86/datasets/master/health.csv")

12.3 Examples 303

for right ordering of the dumbells

health$Area <- factor(health$Area,

levels=as.character(health$Area))

health$Area <- factor(health$Area)

gg <- ggplot(health, aes(x=pct_2013, xend=pct_2014, y=Area,

group=Area)) +

geom_dumbbell(color="#a3c4dc",

size=0.75,

point.colour.l="#0e668b") +

scale_x_continuous(label=waiver()) +

labs(x=NULL,

y=NULL,

title="Dumbbell Chart",

subtitle="Pct Change: 2013 vs 2014",

caption="Source: https://github.com/hrbrmstr/ggalt") +

theme(plot.title = element_text(hjust=0.5, face="bold"),

plot.background=element_rect(fill="#f7f7f7"),

panel.background=element_rect(fill="#f7f7f7"),

panel.grid.minor=element_blank(),

panel.grid.major.y=element_blank(),

panel.grid.major.x=element_line(),

axis.ticks=element_blank(),

legend.position="top",

panel.border=element_blank())

plot(gg)

304 12 ggplot2 Visualizations in R

Slope Charts

library(dplyr)

theme_set(theme_classic())

source_df <- read.csv("https://raw.githubusercontent.com/

jkeirstead/r-slopegraph/master/cancer_survival_rates.csv")

Define functions

tufte_sort <- function(df, x="year", y="value", group="group",

method="tufte", min.space=0.05) {

First rename the columns for consistency

ids <- match(c(x, y, group), names(df))

df <- df[,ids]

names(df) <- c("x", "y", "group")

Expand grid so all combinations have a value

tmp <- expand.grid(x=unique(df$x), group=unique(df$group))

tmp <- merge(df, tmp, all.y=TRUE)

df <- mutate(tmp, y=ifelse(is.na(y), 0, y))

Cast into a matrix shape and arrange by first column

require(reshape2)

tmp <- dcast(df, group ~ x, value.var="y")

ord <- order(tmp[,2])

tmp <- tmp[ord,]

min.space <- min.space*diff(range(tmp[,-1]))

yshift <- numeric(nrow(tmp))

for (i in 2:nrow(tmp)) {

mat <- as.matrix(tmp[(i-1):i, -1])

d.min <- min(diff(mat))

yshift[i] <- ifelse(d.min < min.space, min.space-d.min,0)

}

tmp <- cbind(tmp, yshift=cumsum(yshift))

scale <- 1

tmp <- melt(tmp,id=c("group","yshift"), variable.name="x",

value.name="y")

tmp <- transform(tmp, ypos=y + scale*yshift)

return(tmp)

}

plot_slopegraph <- function(df) {

ylabs <- subset(df, x==head(x,1))$group

yvals <- subset(df, x==head(x,1))$ypos

fontSize <- 3

gg <- ggplot(df,aes(x=x,y=ypos)) +

geom_line(aes(group=group),colour="grey80") +

geom_point(colour="white",size=8) +

geom_text(aes(label=y), size=fontSize) +

12.3 Examples 305

scale_y_continuous(name="", breaks=yvals, labels=ylabs)

return(gg)

}

Prepare data

df <- tufte_sort(source_df,

x="year",

y="value",

group="group",

method="tufte",

min.space=0.05)

df <- transform(df,

x=factor(x, levels=c(5,10,15,20),

labels=c("5 years","10 years",

"15 years","20 years")),

y=round(y))

Plot

plot_slopegraph(df) + labs(title="Estimates of % survival rates") +

theme(axis.title=element_blank(),

axis.ticks = element_blank(),

plot.title = element_text(hjust=0.5,

family = "American Typewriter",

face="bold"),

axis.text = element_text(family =

"American Typewriter",

face="bold"))

306 12 ggplot2 Visualizations in R

Dendrograms

library("ggdendro")

hc <- hclust(dist(USArrests), "ave") # hierarchical clust.

ggdendrogram(hc, rotate = TRUE,size=2)

Density Plots

theme_set(theme_classic())

ggplot(mpg, aes(cty)) + geom_density(aes(fill=factor(cyl)),

alpha=0.8) + labs(title="Density Plot",

subtitle="City Mileage Grouped by Number of cylinders",

caption="Source: mpg", x="City Mileage", fill="# Cylinders")

12.3 Examples 307

Boxplots

theme_set(theme_classic())

ggplot(mpg, aes(class, cty)) + geom_boxplot(varwidth=T,

fill="plum") + labs(title="Boxplot",

subtitle="City Mileage grouped by Class of vehicle",

caption="Source: mpg", x="Class of Vehicle", y="City Mileage")

Boxplots and Dotplots

theme_set(theme_bw())

ggplot(mpg, aes(manufacturer, cty)) + geom_boxplot() +

geom_dotplot(binaxis=’y’, stackdir=’center’,

dotsize=.5, fill="red") +

theme(axis.text.x = element_text(angle=65, vjust=0.6)) +

labs(title="Boxplot + Dotplot", subtitle="City Mileage vs

Class: Each dot represents 1 row in source data",

caption="Source: mpg",x="Class of Vehicle",y="City Mileage")

308 12 ggplot2 Visualizations in R

Waffle Charts

var <- mpg$class # the categorical data

nrows <- 10

df <- expand.grid(y = 1:nrows, x = 1:nrows)

(categ_table <- round(table(var)*((nrows*nrows)/(length(var)))))

2seater compact midsize minivan pickup subcompact suv

2 20 18 5 14 15 26

df$category <- factor(rep(names(categ_table), categ_table))

ggplot(df,aes(x=x,y=y,fill=category)) +

geom_tile(color="black", size=0.5) +

scale_x_continuous(expand=c(0,0)) +

scale_y_continuous(expand = c(0, 0), trans = ’reverse’) +

scale_fill_brewer(palette = "Set3") +

labs(title="Waffle Chart", subtitle="’Class’ of vehicles",

caption="Source: mpg") +

plot.title = element_text(size = rel(1.2)),

legend.position = "right",

axis.text = element_blank(),

axis.title = element_blank(),

axis.ticks = element_blank(),

legend.title = element_blank())

