Contents
Book I – Prelude to Data Understanding (with J. Schellinck, C. Ma, and F. Donzelli)
1. Programming Primer
??. Linear Algebra
??. Multivariate Calculus
??. Numerical Methods
2. Optimization
3. Probability and Applications
4. Introductory Statistical Analysis
??. Regression Analysis
??. Design of Experiments
5. Survey Sampling Methods
??. Time Series and Forecasting
??. Simulations
Book II – Fundamentals of Data Insight (with J. Schellinck)
6. Non-Technical Aspects of Data Work
7. Data Science Basics
8. Data Preparation
9. Data Visualization and Data Exploration
10. Data Engineering and Management
Book III – Spotlight on Machine Learning
11. Machine Learning 101
12. Regression and Value Estimation
13. Spotlight on Classification
14. Spotlight on Clustering
15. Feature Selection and Dimension Reduction
Book IV – Special Topics in Data Analysis
16. Anomaly Detection and Outlier Analysis
17. Web Scraping and Automated Data Collection
18. Bayesian Data Analysis
??. Data Science with Streams
??. Text Analysis and Text Mining
??. Deep Learning
??. Natural Language Processing
19. Queueing Systems
Book V – Advanced Topics in Data Analysis
??. Network Data Analysis
??. Recommender Engines
??. Big Data and Parallel Computing
??. Reinforcement Learning
??. Computer Vision and Image Analysis
??. Causality Modeling